《昇思25天学习打卡营第24天》
接续上一天的学习任务,我们要继续进行下一步的操作
构造网络
当处理完数据后,就可以来进行网络的搭建了。按照DCGAN论文中的描述,所有模型权重均应从mean为0,sigma为0.02的正态分布中随机初始化。
接下来了解一下其他内容
生成器
生成器G的功能是将隐向量z映射到数据空间。实践场景中,该功能是通过一系列Conv2dTranspose转置卷积层来完成的,每个层都与BatchNorm2d层和ReLu激活层配对,输出数据会经过tanh函数,使其返回[-1,1]的数据范围内。
DCGAN论文生成图像如下所示:

通过输入部分中设置的nz、ngf和nc来影响代码中的生成器结构。nz是隐向量z的长度,ngf与通过生成器传播的特征图的大小有关,nc是输出图像中的通道数。
代码实现
import mindspore as ms
from mindspore import nn, ops
from mindspore.common.initializer import Normalweight_init = Normal(mean=0, sigma=0.02)
gamma_init = Normal(mean=1, sigma=0.02)class Generator(nn.Cell):"""DCGAN网络生成器"""def __init__(self):super(Generator, self).__init__()self.generator = nn.SequentialCell(nn.Conv2dTranspose(nz, ngf * 8, 4, 1, 'valid', weight_init=weight_init),nn.BatchNorm2d(ngf * 8, gamma_init=gamma_init),nn.ReLU(),nn.Conv2dTranspose(ngf * 8, ngf * 4, 4, 2, 'pad', 1, weight_init=weight_init),nn.BatchNorm2d(ngf * 4, gamma_init=gamma_init),nn.ReLU(),nn.Conv2dTranspose(ngf * 4, ngf * 2, 4, 2, 'pad', 1, weight_init=weight_init),nn.BatchNorm2d(ngf * 2, gamma_init=gamma_init),nn.ReLU(),nn.Conv2dTranspose(ngf * 2, ngf, 4, 2, 'pad', 1, weight_init=weight_init),nn.BatchNorm2d(ngf, gamma_init=gamma_init),nn.ReLU(),nn.Conv2dTranspose(ngf, nc, 4, 2, 'pad', 1, weight_init=weight_init),nn.Tanh())def construct(self, x):return self.generator(x)generator = Generator()
判别器
判别器D是一个二分类网络模型,输出判定该图像为真实图的概率。
代码实现
class Discriminator(nn.Cell):"""DCGAN网络判别器"""def __init__(self):super(Discriminator, self).__init__()self.discriminator = nn.SequentialCell(nn.Conv2d(nc, ndf, 4, 2, 'pad', 1, weight_init=weight_init),nn.LeakyReLU(0.2),nn.Conv2d(ndf, ndf * 2, 4, 2, 'pad', 1, weight_init=weight_init),nn.BatchNorm2d(ngf * 2, gamma_init=gamma_init),nn.LeakyReLU(0.2),nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 'pad', 1, weight_init=weight_init),nn.BatchNorm2d(ngf * 4, gamma_init=gamma_init),nn.LeakyReLU(0.2),nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 'pad', 1, weight_init=weight_init),nn.BatchNorm2d(ngf * 8, gamma_init=gamma_init),nn.LeakyReLU(0.2),nn.Conv2d(ndf * 8, 1, 4, 1, 'valid', weight_init=weight_init),)self.adv_layer = nn.Sigmoid()def construct(self, x):out = self.discriminator(x)out = out.reshape(out.shape[0], -1)return self.adv_layer(out)discriminator = Discriminator()
接下来进入模型训练阶段
模型训练
其中分为几个要素:
损失函数
当定义了D和G后,接下来将使用MindSpore中定义的二进制交叉熵损失函数BCELoss。
优化器
训练模型:训练判别器和训练生成器。


实现模型训练正向逻辑:
def generator_forward(real_imgs, valid):# 将噪声采样为发生器的输入z = ops.standard_normal((real_imgs.shape[0], nz, 1, 1))# 生成一批图像gen_imgs = generator(z)# 损失衡量发生器绕过判别器的能力g_loss = adversarial_loss(discriminator(gen_imgs), valid)return g_loss, gen_imgsdef discriminator_forward(real_imgs, gen_imgs, valid, fake):# 衡量鉴别器从生成的样本中对真实样本进行分类的能力real_loss = adversarial_loss(discriminator(real_imgs), valid)fake_loss = adversarial_loss(discriminator(gen_imgs), fake)d_loss = (real_loss + fake_loss) / 2return d_lossgrad_generator_fn = ms.value_and_grad(generator_forward, None,optimizer_G.parameters,has_aux=True)
grad_discriminator_fn = ms.value_and_grad(discriminator_forward, None,optimizer_D.parameters)@ms.jit
def train_step(imgs):valid = ops.ones((imgs.shape[0], 1), mindspore.float32)fake = ops.zeros((imgs.shape[0], 1), mindspore.float32)(g_loss, gen_imgs), g_grads = grad_generator_fn(imgs, valid)optimizer_G(g_grads)d_loss, d_grads = grad_discriminator_fn(imgs, gen_imgs, valid, fake)optimizer_D(d_grads)return g_loss, d_loss, gen_imgs
代码训练

结果展示就不多说了看成品


文末附上打卡时间

相关文章:
《昇思25天学习打卡营第24天》
接续上一天的学习任务,我们要继续进行下一步的操作 构造网络 当处理完数据后,就可以来进行网络的搭建了。按照DCGAN论文中的描述,所有模型权重均应从mean为0,sigma为0.02的正态分布中随机初始化。 接下来了解一下其他内容 生成…...
KeePass密码管理工具部署
KeePass密码管理工具部署 安装包下载入口 双击执行,根据提示完成安装: 安装完成后如图:...
C#中导出dataGridView数据为Excel
C#中导出dataGridView数据为Excel #region 导出Excel功能函数 /// <summary> /// dataGridView 导出Excel功能函数 /// </summary> /// <param name"dataView">dataGridView数据表</param> /// <param name"filePath">路径…...
算法学习6——贪心算法
什么是贪心算法? 贪心算法是一种在每一步选择中都采取当前状态下最优或最有利的选择的算法。其核心思想是通过一系列局部最优选择来达到全局最优解。贪心算法广泛应用于各种优化问题,如最短路径、最小生成树、背包问题等。 贪心算法的特点 局部最优选…...
【C++】标准库:介绍string类
string 一.string类介绍二.string类的静态成员变量三.string类的常用接口1.构造函数(constructor)2.析构函数(destructor)3.运算符重载(operator)1.operator2.operator[]3.operator4.operator 4.string的四…...
未来不会使用 AI 的人真的会被淘汰吗?
AI 是今年大火的一个话题,随着 ChatGPT 之类的一系列大模型开始流行以后,有不少的培训机构宣称这样的口号: “未来不会使用 AI 的人将会被淘汰”。我觉得这个观点本身并没有错,但是关键在于那些培训机构出于自身的利益,故意忽略了…...
K8S及Rancher部署
前言 这篇文写的有点子啰嗦,甚至为了控制篇幅我还分出了其他好几篇文章,只在本文中保留了我认为必须存在。而之所以篇幅这么长,一方面是我在相关领域完全新手,啥啥都不会;而另一方面是我所参考的资料都过于精简&#…...
Qt Creator使用git管理代码
1.在GitHub中新建仓库,设置好仓库名后,其它的设置默认即可。 2.打开git bash,输入以下命令: git config --global user.name "xxxxx" #设置你的GitHub用户名 git config --global user.email "xxxxxxxxx.…...
pandas教程:pandas读取csv文件并指定字段数据类型
文章目录 pandas指定数据类型处理数据类型错误parse_dates参数pandas数据类型处理示例pandas指定数据类型 在读取csv文件时,我们可以使用dtype参数来指定每个列的数据类型。这个参数接受一个字典类型的值,其中键是列名,值是数据类型。数据类型可以是Pandas类型或NumPy类型,…...
c#中使用数据验证器
前言 在很多情况下,用户的输入不一定满足我们的设计要求,需要验证输入是否正确,传统的方案是拿到控件数据进行逻辑判定验证后,给用户弹窗提示。这种方法有点职责延后的感觉,数据视图层应该很好的处理用户的输入。使用…...
Java真人版猫爪老鼠活动报名平台系统
🐾“真人版猫爪老鼠活动报名平台系统”——趣味追逐,等你来战!🐭 🐱【萌宠变主角,现实版趣味游戏】 厌倦了电子屏幕的虚拟游戏?来试试“真人版猫爪老鼠活动”吧!在这个平台上&…...
Git原理与用法系统总结
目录 Reference前言版本控制系统Git的诞生配置Git配置用户名和邮件配置颜色配置.gitignore文件 Git的基础用法初始化仓库克隆现有的仓库添加暂存文件提交变动到仓库比较变动查看日志Git回退Git重置暂存区 Git版本管理重新提交取消暂存撤销对文件的修改 Git分支Git分支的优势Git…...
连载|浅谈红队中的权限维持(六)-Linux 主机后门与Linux 隐藏文件
本文来源无问社区,更多实战内容,渗透思路可前往查看http://www.wwlib.cn/index.php/artread/artid/11584.html 0x01 Linux 主机后门 1、添加用户 一句话添加用户 useradd test;echo -e "123456n123456n" |passwd test 或者使用 openssl …...
tomato-靶机渗透
tomato-靶机 一、安装靶机环境 下载双击.ova文件,写文件名路径导入 打开虚拟机用NAT模式 编辑–>虚拟网络编辑器查看IP段 二、信息收集 1.御剑端口扫描查找该虚拟机的IP 访问网站 扫目录 dirb http://192.168.30.130 收集到目录 /server-status /antibot_im…...
git的配置使用
第三周 Tursday 早 git日志的安装使用 [rootweb ~]# yum -y install git.x86_64 //安装软件包 [rootweb ~]# rpm -ql git //查看git的包 [rootweb ~]# mkdir /yy000 //创建新目录 [rootweb ~]# cd /yy000/ [rootweb yy000]# git init //将当前目录做为仓库…...
【1.0】drf初识
【1.0】drf初识 【一】前后端开发模式 【1】前后端混合开发 【示例】flask混合、django混合【案例】bbs项目 模板:dtl语法(django template language)模板语法 {{}} /{% %}后端渲染 qs对象–遍历循环到模板中–使用模板语法渲染渲染完成后 得到纯粹的…...
SparkSQL---编程模型的操作,数据加载与落地及自定义函数的使用
一、SparkSQL编程模型的创建与转化 1、DataFrame的构建 people.txt数据: 1 zhangsan 20 2 lisi 29 3 wangwu 25 4 zhaoliu 30 5 tianqi 35 6 kobe 40 people.json数据:在SparkSQL—简介及RDD V.S DataFrame V.S Dataset编程模型详解里 1、从Spark数据…...
文件解析漏洞--IIS--Vulhub
文件解析漏洞 一、IIS解析漏洞 用windowserver2003安装IIS测试 1.1 IIS6.X 方法一:目录解析 在网站下建立文件夹的名字为.asp/.asa的文件夹,其目录内的任何扩展名的文件都被IIS当作asp文件来解析并执行。 1.txt文件里是asp文件的语法查看当前时间 方…...
你知道缓存的这个问题到底把多少程序员坑惨了吗?
在现代系统中,缓存可以极大地提升性能,减少数据库的压力。 然而,一旦缓存和数据库的数据不一致,就会引发各种诡异的问题。 我们来看看几种常见的解决缓存与数据库不一致的方案,每种方案都有各自的优缺点 先更新缓存&…...
飞创直线模组桁架机械手优势及应用领域
随着工业自动化和智能制造的发展,直线模组桁架机械手极大地减轻了人类的体力劳动负担,在危险性、重复性高的作业环境中展现出了非凡的替代能力,引领着工业生产向自动化、智能化方向迈进。 一、飞创直线模组桁架机械手优势 飞创直线模组桁架…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…...
解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用
在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...
yaml读取写入常见错误 (‘cannot represent an object‘, 117)
错误一:yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因,后面把yaml.safe_dump直接替换成yaml.dump,确实能保存,但出现乱码: 放弃yaml.dump,又切…...
