当前位置: 首页 > news >正文

NLP-使用Word2vec实现文本分类

Word2Vec模型通过学习大量文本数据,将每个单词表示为一个连续的向量,这些向量可以捕捉单词之间的语义和句法关系。本文做文本分类是结合Word2Vec文本内容text,预测其文本标签label。以下使用mock商品数据的代码实现过程过下:

1、准备数据

import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warningswarnings.filterwarnings("ignore")     device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)tmp = spark.sql("""
select sku_name,scenefrom dmb_rpt.dmb_jdt_dmbrpt_items_attribute_a_det_m  where dt='2024-07-15'
group by sku_name,scene
""")
tmp.show(2, False)corpus_file = 'large_corpus_sku_name_and_category.txt'
tmp.toPandas().to_csv(corpus_file, sep=',', index=False, mode='w',header=False )

2、加载数据

import pandas as pd# 加载自定义中文数据
train_data = pd.read_csv(corpus_file, sep=',', header=None)
print("train data:",train_data[:5])# 构造数据集迭代器
def coustom_data_iter(texts, labels):for x, y in zip(texts, labels):yield x, yx = train_data[0].values[:]
#多类标签的one-hot展开
y = train_data[1].values[:]
print("x[:5]:\n",x[:5])
print("y[:5]:\n",y[:5])

3、训练 Word2Vec 模型

from gensim.models.word2vec import Word2Vec
import numpy as np# 训练 Word2Vec 浅层神经网络模型
w2v = Word2Vec(vector_size=100, #是指特征向量的维度,默认为100。min_count=3)     #可以对字典做截断. 词频少于min_count次数的单词会被丢弃掉, 默认值为5。w2v.build_vocab(x)
w2v.train(x,                         total_examples=w2v.corpus_count, epochs=20)# Word2Vec可以直接训练模型,一步到位。这里分了三步
# 第一步构建一个空模型
# 第二步使用 build_vocab 方法根据输入的文本数据 x 构建词典。build_vocab 方法会统计输入文本中每个词汇出现的次数,并按照词频从高到低的顺序将词汇加入词典中。
# 第三步使用 train 方法对模型进行训练,total_examples 参数指定了训练时使用的文本数量,这里使用的是 w2v.corpus_count 属性,表示输入文本的数量# 保存 Word2Vec 模型及词向量
w2v.save('w2v_model.pkl')

4、搭建文本分类模型

4.1 查看文本分类
# 查看分类
label_name = list(set(train_data[1].values[:]))
print(label_name)

4.2 定义文本向量处理函数
# 将文本转化为向量
def average_vec(text):vec = np.zeros(100).reshape((1, 100))for word in text:try:vec += w2v.wv[word].reshape((1, 100))except KeyError:continuereturn vec# 这段代码定义了一个函数 average_vec(text),它接受一个包含多个词的列表 text 作为输入,并返回这些词对应词向量的平均值。该函数# 首先初始化一个形状为 (1, 100) 的全零 numpy 数组来表示平均向量
# 然后遍历 text 中的每个词,并尝试从 Word2Vec 模型 w2v 中使用 wv 属性获取其对应的词向量。如果在模型中找到了该词,函数将其向量加到 vec 中。如果未找到该词,函数会继续迭代下一个词
# 最后,函数返回平均向量 vec# 然后使用列表推导式将 average_vec() 函数应用于列表 x 中的每个元素。得到的平均向量列表使用 np.concatenate() 连接成一个 numpy 数组 x_vec,
# 该数组表示 x 中所有元素的平均向量。x_vec 的形状为 (n, 100),其中 n 是 x 中元素的数量。# 定义文本向量为词向量的avg
text_pipeline  = lambda x: average_vec(x)
# 根据分类index查找分类名称
label_pipeline = lambda x: label_name.index(x)print(text_pipeline("茅台贵州"))
print(label_pipeline("聚会"))

4.3 搭建文本分类模型
from torch.utils.data import DataLoaderdef collate_batch(batch):label_list, text_list= [], []for (_text, _label) in batch:# 标签列表label_list.append(label_pipeline(_label))# 文本列表processed_text = torch.tensor(text_pipeline(_text), dtype=torch.float32)text_list.append(processed_text)label_list = torch.tensor(label_list, dtype=torch.int64)text_list  = torch.cat(text_list)return text_list.to(device),label_list.to(device)from torch import nn# 模型搭建
class TextClassificationModel(nn.Module):def __init__(self, num_class):super(TextClassificationModel, self).__init__()self.fc = nn.Linear(100, num_class)def forward(self, text):return self.fc(text)# 训练和评估
import timedef train(dataloader):model.train()  # 训练模式total_acc, train_loss, total_count = 0, 0, 0log_interval = 50start_time   = time.time()for idx, (text,label) in enumerate(dataloader):predicted_label = model(text)optimizer.zero_grad()                    # grad属性归零loss = criterion(predicted_label, label) # 计算网络输出和真实值之间的差距,label为真实值loss.backward()                          # 反向传播torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1) # 梯度裁剪optimizer.step()  # 每一步自动更新# 记录acc与losstotal_acc   += (predicted_label.argmax(1) == label).sum().item()train_loss  += loss.item()total_count += label.size(0)if idx % log_interval == 0 and idx > 0:elapsed = time.time() - start_timeprint('| epoch {:1d} | {:4d}/{:4d} batches ''| train_acc {:4.3f} train_loss {:4.5f}'.format(epoch, idx,len(dataloader),total_acc/total_count, train_loss/total_count))total_acc, train_loss, total_count = 0, 0, 0start_time = time.time()def evaluate(dataloader):model.eval()  # 测试模式total_acc, train_loss, total_count = 0, 0, 0with torch.no_grad():for idx, (text,label) in enumerate(dataloader):predicted_label = model(text)loss = criterion(predicted_label, label)  # 计算loss值# 记录测试数据total_acc   += (predicted_label.argmax(1) == label).sum().item()train_loss  += loss.item()total_count += label.size(0)return total_acc/total_count, train_loss/total_count

4.4 加载数据,模型训练
# !pip install torchtext
import math
from torch.utils.data.dataset  import random_split
from torchtext.data.functional import to_map_style_dataset# 初始化
num_class  = len(label_name)
vocab_size = 100000
em_size    = 12
model      = TextClassificationModel(num_class).to(device)# 超参数
EPOCHS     = 10 # epoch
LR         = 5  # 学习率
BATCH_SIZE = 64*6 # batch size for trainingcriterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None# 构建数据集
train_iter    = coustom_data_iter(train_data[0].values[:], train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)split_train_, split_valid_ = random_split(train_dataset, [math.floor(len(train_dataset)  *0.8),  math.ceil(len(train_dataset) *0.2)])train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,shuffle=True, collate_fn=collate_batch)valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,shuffle=True, collate_fn=collate_batch)for epoch in range(1, EPOCHS + 1):epoch_start_time = time.time()train(train_dataloader)val_acc, val_loss = evaluate(valid_dataloader)# 获取当前的学习率lr = optimizer.state_dict()['param_groups'][0]['lr']if total_accu is not None and total_accu > val_acc:scheduler.step()else:total_accu = val_accprint('-' * 69)print('| epoch {:1d} | time: {:4.2f}s | ''valid_acc {:4.3f} valid_loss {:4.3f} | lr {:4.6f}'.format(epoch,time.time() - epoch_start_time,val_acc,val_loss,lr))print('-' * 69)

4.5 模型评价
test_acc, test_loss = evaluate(valid_dataloader)
print('模型准确率为:{:5.4f}'.format(test_acc))
模型准确率为:0.6767
4.6 模型文本分类预测
def predict(text, text_pipeline):with torch.no_grad():text = torch.tensor(text_pipeline(text), dtype=torch.float32)print(text.shape)print("==>:", text)output = model(text)return output.argmax(1).item()model = model.to("cpu")for ex_text_str in ["【浓香】五粮液甲辰龙年纪念酒(5瓶装)", "【浓香】五粮液财富人生蓝钻", "【酱香】茅台集团 茅乡名家名作酒", "【浓香】五粮液囍祥瑞添福文化酒"]:print("该商品适合的场景是:%s" %label_name[predict(ex_text_str, text_pipeline)])

Done

相关文章:

NLP-使用Word2vec实现文本分类

Word2Vec模型通过学习大量文本数据,将每个单词表示为一个连续的向量,这些向量可以捕捉单词之间的语义和句法关系。本文做文本分类是结合Word2Vec文本内容text,预测其文本标签label。以下使用mock商品数据的代码实现过程过下: 1、…...

基于SpringBoot实现验证码功能

目录 一 实现思路 二 代码实现 三 代码汇总 现在的登录都需要输入验证码用来检测是否是真人登录,所以验证码功能在现在是非常普遍的,那么接下来我们就基于springboot来实现验证码功能。 一 实现思路 今天我们介绍的是两种主流的验证码,一…...

字节测开面筋大总结!!!!

字节测开 字节 测开 一二三面 面经字节测开实习凉经字节测开一面字节测开一面凉经字节测开一面凉经字节测开一面凉经字节测开一面凉经字节跳动测开(电商)一面字节测开实习二面字节测开面经字节测开面经字节测开实习一面字节测开一面(挂&#…...

Mindspore框架DCGAN模型实现漫画头像生成|(二)DCGAN模型构建

Mindspore框架DCGAN模型实现漫画头像生成 Mindspore框架DCGAN模型实现漫画头像生成|(一)漫画头像数据集准备Mindspore框架DCGAN模型实现漫画头像生成|(二)DCGAN模型构建Mindspore框架DCGAN模型实现漫画头像生成|(三&a…...

mongo-csharp-driver:MongoDB官方的C#客户端驱动程序!

MongoDB一个开源、高性能、无模式的文档型数据库,在日常项目开发中,运用也是非常广泛。 MongoDB官方也针对各门编程语言,都推出相应的客户端驱动程序,下面一起了解下C#版本。 01 项目简介 mongo-csharp-driver是 MongoDB官方C#…...

网络流量分析>>pcapng文件快速分析有用价值解析

引言 在网络安全和流量管理中,解析网络协议数据包是了解网络行为和检测潜在威胁的关键步骤。本文介绍了如何使用Python解析和分析TCP、UDP和ICMP协议的数据包,并统计端口的访问次数。本文的示例代码展示了如何处理不同协议的数据包,提取关键…...

【大模型系列篇】Vanna-ai基于检索增强(RAG)的sql生成框架

简介 Vanna是基于检索增强(RAG)的sql生成框架 Vanna 使用一种称为 LLM(大型语言模型)的生成式人工智能。简而言之,这些模型是在大量数据(包括一堆在线可用的 SQL 查询)上进行训练的,并通过预测响应提示中最…...

【Nacos安装】

这里写目录标题 Nacos安装jar包启动Docker单体Docker集群 Nacos相关配置日志配置数据库配置 Nacos安装 jar包启动 下载jar包 在官方github,根据需求选择相应的版本下载。 解压 tar -zxvf nacos-server-2.4.0.1.tar.gz或者解压到指定目录 tar -zxvf nacos-serv…...

js、ts、argular、nodejs学习心得

工作中需要前端argular开发桌面程序,后端用nodejs开发服务器,商用软件架构...

【Unity】RPG2D龙城纷争(十八)平衡模拟器

更新日期:2024年7月31日。 项目源码:第五章发布(正式开始游戏逻辑的章节) 索引 简介一、BalanceSimulator 类二、RoleAgent 角色代理类三、绘制代理角色四、模拟攻击简介 平衡模拟器用于实时模拟测试角色属性以及要诀属性的数值,以寻找数值设计的平衡性。 介于运行正式游…...

java.lang.IllegalStateException: Duplicate key InventoryDetailDO

以下总结自以下链接 Java8 Duplicate key 异常解决-CSDN博客 原因:由于我们使用了jdk8的新特性中的stream流,将list转换为map集合,但是原来的list集合中存在重复的值,我们不知道如何进行取舍,所以报错 解决方式&…...

Python使用selenium访问网页完成登录——装饰器重试机制汇总

文章目录 示例一:常见装饰器编写重试机制示例二:使用类实现装饰器示例三:使用函数装饰器并返回闭包示例四:使用 wrapt 模块 示例一:常见装饰器编写重试机制 示例代码 import time import traceback import logging from typing import Call…...

“微软蓝屏”事件引发的深度思考:网络安全与系统稳定性的挑战与应对

“微软蓝屏”事件暴露了网络安全哪些问题? 近日,一次由微软视窗系统软件更新引发的全球性“微软蓝屏”事件,不仅成为科技领域的热点新闻,更是一次对全球IT基础设施韧性与安全性的深刻检验。这次事件,源于美国电脑安全…...

2024.07纪念一 debezium : spring-boot结合debezium

使用前提: 一、mysql开启了logibin 在mysql的安装路径下的my.ini中 【mysqlid】下 添加 log-binmysql-bin # 开启 binlog binlog-formatROW # 选择 ROW 模式 server_id1 # 配置 MySQL replaction 需要定义,不要和 canal 的 slaveId 重复 参考gitee的项目…...

mysql怎么查询json里面的字段

mysql怎么查询json里面的字段: 要在 MySQL 数据库中查询 JSON 字段中的 city 值,你可以使用 MySQL 提供的 JSON 函数。假设表名是 your_table,包含一个名为 json_column 的 JSON 字段。 以下是一个查询示例,展示如何从 json_colu…...

C++ 右值 左值引用

一.什么是左值引用 右值引用 1.左值引用 左值是一个表示数据的表达式(如变量名或解引用的指针),我们可以获取它的地址可以对它赋值。定义时const修饰符后的左值,不能给他赋值,但是可以取它的地址。左值引用就是给左值的引用,给左…...

「JavaEE」Spring IoC 1:Bean 的存储

🎇个人主页 🎇所属专栏:Spring 🎇欢迎点赞收藏加关注哦! IoC 简介 IoC 全称 Inversion of Control,即控制反转 控制反转是指控制权反转:获得依赖对象的过程被反转了 传统开发模式中&…...

springBoot快速搭建WebSocket

添加依赖 在pom.xml中加入WebSocket相关依赖&#xff1a; <dependencies><!-- websocket --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId></dependency>…...

掌控授权的艺术:Laravel自定义策略模式深度解析

掌控授权的艺术&#xff1a;Laravel自定义策略模式深度解析 在现代Web应用开发中&#xff0c;权限管理是核心功能之一。Laravel框架通过其策略模式提供了一种优雅的方式来处理授权问题。然而&#xff0c;随着应用的复杂性增加&#xff0c;内置的策略可能不足以满足所有需求。这…...

Git操作指令(随时更新)

Git操作指令 一、安装git 1、设置配置信息&#xff1a; # global全局配置 git config --global user.name "Your username" git config --global user.email "Your email"# 显示颜色 git config --global color.ui true# 配置别名&#xff0c;各种指令都…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作&#xff1a;验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化&#xff1a;测试aof和aof持久化机制&#xff0c;确保数据在开启后正确恢复。 事务&#xff1a;检查事务的原子性和回滚机制。 发布订阅&#xff1a;确保消息正确传递。 2、性…...

在树莓派上添加音频输入设备的几种方法

在树莓派上添加音频输入设备可以通过以下步骤完成&#xff0c;具体方法取决于设备类型&#xff08;如USB麦克风、3.5mm接口麦克风或HDMI音频输入&#xff09;。以下是详细指南&#xff1a; 1. 连接音频输入设备 USB麦克风/声卡&#xff1a;直接插入树莓派的USB接口。3.5mm麦克…...

Spring Security 认证流程——补充

一、认证流程概述 Spring Security 的认证流程基于 过滤器链&#xff08;Filter Chain&#xff09;&#xff0c;核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤&#xff1a; 用户提交登录请求拦…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...