当前位置: 首页 > news >正文

线性代数之矩阵

一、思维导图

二、矩阵及其运算

1、矩阵的定义

注:
零矩阵:元素均为0 的矩阵,通常记作0
m*n称为矩阵的类型。
满足阶梯形矩阵
行简化的阶梯形矩阵即满足如下条件的矩阵: (1)阶梯形; (2)非零首元所在列其余元素均为0 ; (3) 非零首元均是1.

2、运算法则

2.1 矩阵加法

2.2 矩阵的数量乘法

2.3 矩阵的乘积

3、几个特别的矩阵

3.1 𝑛阶单位矩阵

3.2 𝑛阶数量矩阵

3.3 对角矩阵

3.4 上(下)三角矩阵

3.5 结论

4、定理 若矩阵𝑨,𝑩为同阶方阵,则 𝑨𝑩 = |𝑨 | | �� |。

5、方阵的幂和方阵的多项式

6、转置与对称

7、可逆矩阵

7.1 逆矩阵

定理 若𝑨是可逆矩阵,则𝑨的逆矩阵是唯一的

7.2 伴随矩阵

7.3 运算律

三、矩阵的初等变换和初等矩阵

1、初等变换

2、初等矩阵

初等矩阵:单位矩阵经过一次初等变换所得到的矩阵

作用

3、初等变换法求逆矩阵

4、初等变换法解矩阵方程

四、复习题

相关文章:

线性代数之矩阵

一、思维导图二、矩阵及其运算1、矩阵的定义注:零矩阵:元素均为0 的矩阵,通常记作0m*n称为矩阵的类型。满足阶梯形矩阵 行简化的阶梯形矩阵即满足如下条件的矩阵: (1)阶梯形; (2)非零首元所在列其余元素均为0 ; (3) 非…...

【个人首测】百度文心一言 VS ChatGPT GPT-4

昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现。 昨天下午百度发布了文心一言,对标ChatGPT,录屏无实机演示让百度股价暴跌。但是晚上百度就…...

基于STM32的ADC采样及各式滤波实现(HAL库,含VOFA+教程)

前言:本文为手把手教学ADC采样及各式滤波算法的教程,本教程的MCU采用STM32F103ZET6。以HAL库的ADC采样函数为基础进行教学,通过各式常见滤波的实验结果进行分析对比,搭配VOFA工具直观的展示滤波效果。ADC与滤波算法都是嵌入式较为…...

Redis高级篇

文章目录面试题库redis有哪些用法?redis单线程时代性能依然很快的原因?主线程和IO线程怎么协作完成请求处理的BigKey(重要)什么算是BigKey?怎么发现BigKey?怎么删除bigkey?bigkey生产调优缓存双…...

sess.close()这句话一般是干什么的,在代码中可以不加么?

sess.close()这句话是用于关闭TensorFlow会话对象的方法。 关闭会话对象可以释放资源,避免内存泄漏,以及清除图中的变量和操作。 在代码中是否可以不加这句话,取决于你是如何创建和使用会话对象的。如果你使用了with语句来创建和管理会话对…...

网络舆情监测处置平台,TOOM舆情如何做好舆情风险点及防控措施?

网络舆情监测处置平台是一个综合性的系统,旨在帮助企业、政府或其他组织有效地管理和处置网络舆情。从多个角度来分析该平台,我们可以考虑以下几个方面: 1,技术实现 网络舆情监测处置平台的技术实现是其核心,它通常采…...

百度文心一言对标 ChatGPT,你怎么看?

文心一言 VS ChatGPT接受不完美 期待进步里程碑意义文心一言初体验✔ 文学创作✔ 商业文案创作✔ 数理逻辑推算✔ 中文理解✔ 多模态生成写在最后何为文心?“文”就是我们中华语言文字中的文,“心”是希望该语言模型可以用心的去理解语言,用心…...

阿里笔试2023-3-15

太菜了,记录一下笔试题目,代码有更好解法欢迎分享。 1、满二叉子树的数量。 给定一颗二叉树,试求这课二叉树有多少个节点满足以该节点为根的子树是满二叉树?满二叉树指每一层都达到节点最大值。 第一行输入n表示节点数量&#xff…...

STM32:TIM定时器输出比较(OC)

一、输出比较简介 1、输出比较 OC(Output Comapre)输出比较输出比较可以通过比较CNT(时基单元)和CCR(捕获单元)寄存器值的关系,来对输出电平进行置1、置0或翻转的操作,用于输出一定频…...

HTTPS 加密协议

✏️作者:银河罐头 📋系列专栏:JavaEE 🌲“种一棵树最好的时间是十年前,其次是现在” 目录HTTPS"加密" 是什么HTTPS 的工作过程引入证书HTTPS http 安全层 (SSL) SSL 用来加密的协议,也叫 TLS …...

分布式锁和分布式事务

分布式锁 没有图形,只通过大量文字进行说明。分布式锁:redis分布式锁, zk分布式锁, 数据库做分布式锁 redis分布式锁 setnx key value ex 10 原子操作 AB两个线程减库存业务,假设库存是10 A线程获取锁,…...

RK3568平台开发系列讲解(驱动基础篇)I2C协议介绍

🚀返回专栏总目录 文章目录 一、I2C基本读写过程二、通讯的起始和停止信号三、数据有效性四、地址及数据方向五、响应沉淀、分享、成长,让自己和他人都能有所收获!😄 📢I2C的协议定义了通讯的起始和停止信号、数据有效性、响应、仲裁、时钟同步和地址广播等环节。 一、…...

HTML 音频(Audio)

HTML 音频(Audio) 声音在HTML中可以以不同的方式播放. 问题以及解决方法 在 HTML 中播放音频并不容易! 您需要谙熟大量技巧,以确保您的音频文件在所有浏览器中(Internet Explorer, Chrome, Firefox, Safari, Opera)和所有硬件上…...

什么是Vue

✅作者简介:CSDN一位小博主,正在学习前端,欢迎大家一起来交流学习🏆 📃个人主页:白月光777的CSDN博客 🔥系列专栏:Vue从入门到进阶 💬个人格言:但行好事&…...

python 内置函数和多线程

以下是Python的一些内置函数。这些函数是Python语言提供的基本功能,可以在不需要导入任何其他模块的情况下直接使用。这些函数可以完成广泛的任务,例如数学运算,序列和集合操作,类型转换,文件操作等等。透彻理解这些函…...

【Spring】我抄袭了Spring,手写一套MySpring框架。。。

这篇博客实现了一个简单版本的Spring,主要包括Spring的Ioc和Aop功能 文章目录这篇博客实现了一个简单版本的Spring,主要包括Spring的Ioc和Aop功能🚀ComponentScan注解✈️Component注解🚁在spring中ioc容器的类是ApplicationConte…...

vue中的生命周期

前言 很多时候我们希望能在 vue 生命周期的过程中执行一些操作,生命周期钩子函数也因此诞生了。相信使用过 vue 框架的同学都知道,生命周期的钩子函数允许我们在实例的不同阶段执行各种操作,便于我们更好的控制和使用实例。 生命周期钩子函数…...

硬件原理图设计规范(二)

1、可编程逻辑器件 编号 级别 条目内容 备注 1 推荐 FPGA的LE资源利用率要保证在50%~80%之间,EPLD的MC资源的利用率要保证在50%~90%之间。对于FPGA中的锁相环、RAM、乘法器、DSP单元、CPU核等资源,经过精确预算,…...

复旦微ZYNQ7020全国产替代方案设计

现在国产化进度赶人,进口的芯片只做了个功能验证,马上就要换上国产的。国内现在已经做出来zynq的只有复旦微一家,已经在研制的有上海安路,还有成都华微(不排除深圳国威也在做,毕竟这个市场潜力很大&#xf…...

蓝桥杯真题——自动售水机

2012年第四届全国电子专业人才设计与技能大赛“自动售水机”设计任务书1. 系统框图接下来我们将任务分块: 1. 按键控制单元 设定按键 S7 为出水控制按键,当 S7 按下后,售水机持续出水(继电器接通,指示 灯 L10 点亮&…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: ​onCreate()​​ ​调用时机​:Activity 首次创建时调用。​…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后,迭代器会失效,因为顺序迭代器在内存中是连续存储的,元素删除后,后续元素会前移。 但一些场景中,我们又需要在执行删除操作…...

使用SSE解决获取状态不一致问题

使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件,这个上传文件是整体功能的一部分,文件在上传的过程中…...

海云安高敏捷信创白盒SCAP入选《中国网络安全细分领域产品名录》

近日,嘶吼安全产业研究院发布《中国网络安全细分领域产品名录》,海云安高敏捷信创白盒(SCAP)成功入选软件供应链安全领域产品名录。 在数字化转型加速的今天,网络安全已成为企业生存与发展的核心基石,为了解…...

向量几何的二元性:叉乘模长与内积投影的深层联系

在数学与物理的空间世界中,向量运算构成了理解几何结构的基石。叉乘(外积)与点积(内积)作为向量代数的两大支柱,表面上呈现出截然不同的几何意义与代数形式,却在深层次上揭示了向量间相互作用的…...

【多线程初阶】单例模式 指令重排序问题

文章目录 1.单例模式1)饿汉模式2)懒汉模式①.单线程版本②.多线程版本 2.分析单例模式里的线程安全问题1)饿汉模式2)懒汉模式懒汉模式是如何出现线程安全问题的 3.解决问题进一步优化加锁导致的执行效率优化预防内存可见性问题 4.解决指令重排序问题 1.单例模式 单例模式确保某…...