二叉搜索树的第 k 大的节点
题目描述
给定一棵二叉搜索树,请找出其中第 k 大的节点。

解题基本知识
二叉搜索树(Binary Search Tree)又名二叉查找树、二叉排序树。它是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树。
-
解法一: 递归
利用二叉搜索树的特性进行中序遍历。先遍历左节点,然后根节点,最后遍历右节点,得到的是一个递增序列,那么序列的倒序为递减序列。因此这道题我们可以转变为求二叉搜索树中序遍历倒序的第 k 个数。

/*** Definition for a binary tree node.* function TreeNode(val) {* this.val = val;* this.left = this.right = null;* }*/ /*** @param {TreeNode} root* @param {number} k* @return {number}*/ const kthLargest = (root, k) => {let res = null; // 初始化返回值// 因为需要倒序第 k 个,所以处理是右节点,根节点,然后左节点const dfs = (root) => {if (!root) return; // 如果当前节点为 null,本轮处理结束dfs(root.right); // 开始处理右节点if (k === 0) return; // k 值 为 0,代表已经处理的节点超过目标节点,本轮处理结束if (--k === 0) {// 当 k 值 减 1 为 0,表示已经到了我们想要的 k 大 节点,保存当前值res = root.val;}dfs(root.left); // 处理左节点};dfs(root); // 从初始化节点开始处理return res; };- 复杂度分析:
- 时间复杂度 O(N):无论 k 的值大小,递归深度都为 N,占用 O(N) 时间。
- 空间复杂度 O(N):无论 k 的值大小,递归深度都为 N,占用 O(N) 空间。
- 复杂度分析:
-
解法二: 迭代
思路还是二叉树的中序遍历,利用栈的方式进行遍历。

/*** Definition for a binary tree node.* function TreeNode(val) {* this.val = val;* this.left = this.right = null;* }*/ /*** @param {TreeNode} root* @param {number} k* @return {number}*/ var kthLargest = function (root, k) {if (!root) return 0;// 声明储存栈const stack = [];// 判断当前栈否有节点和当前遍历节点位置while (stack.length || root) {while (root) {// 往栈里添加当前节点,同时切换为右节点处理stack.push(root);root = root.right;}// 取出当前栈顶元素,根据添加的顺序,当前元素是栈内最大的const cur = stack.pop();k--;if (k === 0) return cur.val;// 切换为左节点处理root = cur.left;}return 0; };- 复杂度分析:
- 时间复杂度 O(N):需要遍历整棵树一次,复杂度为 O(N)
- 空间复杂度 O(N):需要额外空间栈进行储存树,复杂度为 O(N)
- 复杂度分析:
相关文章:
二叉搜索树的第 k 大的节点
题目描述 给定一棵二叉搜索树,请找出其中第 k 大的节点。 解题基本知识 二叉搜索树(Binary Search Tree)又名二叉查找树、二叉排序树。它是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子…...
利用langchain 做大模型 Few-shot Learning 提示,包括固定和向量相似的动态样本筛选
文章目录 few-shotFixed Examples 固定样本Dynamic few-shot prompting 动态样本提示辅助参考资料 few-shot 相比大模型微调,在有些情况下,我们更想使用 Few-shot Learning 通过给模型喂相关样本示例,让模型能够提升相应任务的能力。 固定样…...
基于python的百度迁徙迁入、迁出数据分析(五)
终于在第五篇文章我们进入了这个系列的正题:数据分析 这里我选择上海2024年5月1日——5月5日的迁入、迁出数据作为分析的基础,首先选择节假日的数据作为分析的原因呢,主要是节假日人们出行目的比较单一(出游、探亲)&a…...
SpringBoot 如何处理跨域请求
SpringBoot 处理跨域请求,通常是通过配置全局的 CORS(跨源资源共享)策略来实现的。CORS 是一种机制,它使用额外的 HTTP 头部来告诉浏览器,让运行在一个 origin (domain) 上的 web 应用被准许访问来自不同源服务器上的指…...
大数据技术基础编程、实验和案例----大数据课程综合实验案例
一、实验目的 (1)熟悉Linux系统、MySQL、Hadoop、HBase、Hive、Sqoop、R、Eclipse等系统和软件的安装和使用; (2)了解大数据处理的基本流程; (3)熟悉数据预处理方法; (4)熟悉在不同类型数据库之…...
微信小程序-获取手机号:HttpClientErrorException: 412 Precondition Failed: [no body]
问题: 412 异常就是你的请求参数获取请求头与服务器的不符,缺少请求体! 我的问题: 我这里获取微信手机号的时候突然给我报错142,但是代码用的是原来的代码,换了一个框架就噶了! 排查问题&am…...
大数据核心概念与技术架构简介
大数据基本概念 大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 大数据特征: 数据量大:一般以P(1000个TB&a…...
快排 谁在中间
原题 Whos in the Middle FJ is surveying his herd to find the most average cow. He wants to know how much milk this median cow gives: half of the cows give as much or more than the median; half give as much or less. FJ正在调查他的牛群,以找到最…...
ORA-00911: invalid character
场景: 调用接口查询oracle的数据库数据时报错ORA-00911: invalid character,但是sql语句没有问题放在navicat控制台中运行也没有问题,但是代码中跑就会报无效字符集 分析: 代码中Oracle的语法解析器比较严格,比如句…...
Pytorch实现线性回归Linear Regression
借助 PyTorch 实现深度神经网络 - 线性回归 - 第 2 周 | Coursera 线性回归预测 用PyTorch实现线性回归模块 创建自定义模块(内含一个线性回归) 训练线性回归模型 对于线性回归,特定类型的噪声是高斯噪声 平均损失均方误差函数:…...
十八次(虚拟主机与vue项目、samba磁盘映射、nfs共享)
1、虚拟主机搭建环境准备 将原有的nginx.conf文件备份 [rootserver ~]# cp /usr/local/nginx/conf/nginx.conf /usr/local/nginx/conf/nginx.conf.bak[rootserver ~]# grep -Ev "#|^$" /usr/local/nginx/conf/nginx.conf[rootserver ~]# grep -Ev "#|^$"…...
P1340 兽径管理 题解|最小生成树
题目大意 洛谷中链接 推荐文章:并查集入门 原文 约翰农场的牛群希望能够在 N N N 个草地之间任意移动。草地的编号由 1 1 1 到 N N N。草地之间有树林隔开。牛群希望能够选择草地间的路径,使牛群能够从任一 片草地移动到任一片其它草地。 牛群可在…...
Python,Maskrcnn训练,cannot import name ‘saving‘ from ‘keras.engine‘ ,等问题集合
Python版本3.9,tensorflow2.11.0,keras2.11.0 问题一、module keras.engine has no attribute Layer Traceback (most recent call last):File "C:\Users\Administrator\Desktop\20240801\代码\test.py", line 16, in <module>from mrc…...
Linux常用工具
文章目录 tar打包命令详解unzip命令:解压zip文件vim操作详解netstat详解df命令详解ps命令详解find命令详解 tar打包命令详解 tar命令做打包操作 当 tar 命令用于打包操作时,该命令的基本格式为: tar [选项] 源文件或目录此命令常用的选项及…...
AI未来的发展如何
AI(人工智能)的发展前景非常广阔,随着技术的不断进步和应用场景的不断拓展,AI将在多个领域发挥重要作用。以下是对AI发展前景的详细分析: 一、技术突破与创新 生成式AI的兴起:以ChatGPT为代表的生成式AI技…...
若依替换首页上的logo
...
sed的使用示例
场景:使用sed将多个空格变成单空格,再使用cut来切分得到需要的结果 得到后面这个文件名: ls ./ drwxr-x— 2 root root 6 Jul 18 9:00 7b40f1412d83c1524af7977593607f15 drwxr-x— 2 root root 6 Jul 18 14:00 50af29cef2c65a9d28905a3ce831bcb7 drwxr-x— 2 root root 6 Jul…...
学历不是障碍:大专生如何成功进入软件测试行业
摘要: 在当今技术驱动的职场环境中,软件测试已成为一个关键的职业领域。尽管许多人认为高学历是进入这一行业的先决条件,但实际上,大专学历的学生同样有机会在软件测试领域取得成功。本文将探讨大专生如何通过技能提升、实践经验和…...
文件解析漏洞—IIS解析漏洞—IIS6.X
目录 方式 1:目录解析 方式 2:畸形文件解析 方式 3:PUT 上传漏洞(123.asp;.jpg 解析成 asp) 环境:Windows server 2003 添加 IIS 管理工具——打开 IIS——添加网站 创建完成之后,右击创建的…...
Sqlmap中文使用手册 - Brute force模块参数使用
目录 1. Brute force模块的帮助文档2. 各个参数的介绍2.1 --common-tables2.2 --common-columns2.3 --common-files 1. Brute force模块的帮助文档 Brute force:These options can be used to run brute force checks--common-tables Check existence of common tables--c…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
Java数值运算常见陷阱与规避方法
整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...
