图的同态Graph Homomorphism与同构Graph Isomorphism
- 图的同态Graph Homomorphism
图的同态(Graph Homomorphism)是图论中的一个重要概念,用于描述图之间的一种映射关系。图的同态描述了一个图如何通过映射保留其边的结构。
### 图的同态定义
设有两个图 \( G = (V_G, E_G) \) 和 \( H = (V_H, E_H) \)。一个从图 \( G \) 到图 \( H \) 的映射 \( f: V_G \to V_H \) 被称为图的同态,如果对于 \( G \) 中的每一条边 \( (u, v) \in E_G \),在 \( H \) 中对应的边 \( (f(u), f(v)) \) 也在 \( E_H \) 中,即:
\[ \forall (u, v) \in E_G, (f(u), f(v)) \in E_H \]
这个定义意味着,图的同态映射保留了边的存在性,但不要求完全保留顶点间的连接关系。
### 例子
#### 例子 1:简单图的同态
**图 \( G \)(完全图 \( K_3 \))**:
- 顶点集合 \( V_G = \{a, b, c\} \)
- 边集合 \( E_G = \{(a, b), (b, c), (c, a)\} \)
**图 \( H \)(具有两个顶点和一条边的图)**:
- 顶点集合 \( V_H = \{x, y\} \)
- 边集合 \( E_H = \{(x, y)\} \)
**映射 \( f \)**:
- \( f(a) = x \)
- \( f(b) = x \)
- \( f(c) = y \)
**验证同态**:
- 对于 \( G \) 中的每一条边:
- 边 \( (a, b) \) 映射到 \( (x, x) \),但 \( E_H \) 中只有边 \( (x, y) \),因此这条边的映射不是有效的。
- 边 \( (b, c) \) 映射到 \( (x, y) \),这是有效的。
- 边 \( (c, a) \) 映射到 \( (y, x) \),这也是有效的。
在这个例子中,映射 \( f \) 并没有完全保留边的结构,因为 \( (a, b) \) 在 \( H \) 中并没有对应的边。因而,\( f \) 并不是一个有效的同态。
#### 例子 2:完整图的同态
**图 \( G \)(有三个顶点和两条边的图)**:
- 顶点集合 \( V_G = \{1, 2, 3\} \)
- 边集合 \( E_G = \{(1, 2), (2, 3)\} \)
**图 \( H \)(有四个顶点和两条边的图)**:
- 顶点集合 \( V_H = \{a, b, c, d\} \)
- 边集合 \( E_H = \{(a, b), (b, c)\} \)
**映射 \( f \)**:
- \( f(1) = a \)
- \( f(2) = b \)
- \( f(3) = c \)
**验证同态**:
- 对于 \( G \) 中的每一条边:
- 边 \( (1, 2) \) 映射到 \( (a, b) \),这在 \( H \) 中是存在的。
- 边 \( (2, 3) \) 映射到 \( (b, c) \),这在 \( H \) 中也是存在的。
在这个例子中,映射 \( f \) 是一个有效的同态,因为每条边在 \( G \) 中都有相应的边在 \( H \) 中与之对应。
### 总结
- 图的同态保留了边的存在性,但不要求顶点间的连接关系完全一致。
- 同态映射可以用来研究图的结构特性和图的简化问题。
- 在第一个例子中,映射并不是有效的同态,因为并不是所有边都可以映射到目标图中;而在第二个例子中,映射是有效的同态,因为所有边在目标图中都有对应的边。
- 同构Graph Isomorphism
图的同构(Graph Isomorphism)是图论中的一个核心概念,用于描述两个图在结构上的完全等价关系。两个图 \( G \) 和 \( H \) 被称为同构的,如果存在一个顶点的双射(双向一一映射) \( f: V_G \to V_H \),使得对于 \( G \) 中的每一条边 \( (u, v) \in E_G \),在 \( H \) 中有一条边 \( (f(u), f(v)) \in E_H \),且这种映射保留了图的边的连接关系。即:
\[ \forall (u, v) \in E_G, (f(u), f(v)) \in E_H \]
### 例子
#### 例子 1:三角形图的同构
**图 \( G \)(完全图 \( K_3 \))**:
- 顶点集合 \( V_G = \{a, b, c\} \)
- 边集合 \( E_G = \{(a, b), (b, c), (c, a)\} \)
**图 \( H \)(另外一个完全图 \( K_3 \))**:
- 顶点集合 \( V_H = \{x, y, z\} \)
- 边集合 \( E_H = \{(x, y), (y, z), (z, x)\} \)
**同构映射 \( f \)**:
- \( f(a) = x \)
- \( f(b) = y \)
- \( f(c) = z \)
**验证同构**:
- 对于 \( G \) 中的每一条边:
- 边 \( (a, b) \) 映射到 \( (x, y) \),这在 \( H \) 中存在。
- 边 \( (b, c) \) 映射到 \( (y, z) \),这在 \( H \) 中存在。
- 边 \( (c, a) \) 映射到 \( (z, x) \),这在 \( H \) 中存在。
在这个例子中,映射 \( f \) 是一个有效的同构映射,因为它保留了边的结构,说明图 \( G \) 和图 \( H \) 是同构的。
#### 例子 2:具有不同标签的同构图
**图 \( G \)(两个三角形共享一个公共边)**:
- 顶点集合 \( V_G = \{a, b, c, d, e\} \)
- 边集合 \( E_G = \{(a, b), (b, c), (c, a), (b, d), (d, e), (e, b)\} \)
**图 \( H \)(另一个具有相同结构的图)**:
- 顶点集合 \( V_H = \{1, 2, 3, 4, 5\} \)
- 边集合 \( E_H = \{(1, 2), (2, 3), (3, 1), (2, 4), (4, 5), (5, 2)\} \)
**同构映射 \( f \)**:
- \( f(a) = 1 \)
- \( f(b) = 2 \)
- \( f(c) = 3 \)
- \( f(d) = 4 \)
- \( f(e) = 5 \)
**验证同构**:
- 对于 \( G \) 中的每一条边:
- 边 \( (a, b) \) 映射到 \( (1, 2) \),这在 \( H \) 中存在。
- 边 \( (b, c) \) 映射到 \( (2, 3) \),这在 \( H \) 中存在。
- 边 \( (c, a) \) 映射到 \( (3, 1) \),这在 \( H \) 中存在。
- 边 \( (b, d) \) 映射到 \( (2, 4) \),这在 \( H \) 中存在。
- 边 \( (d, e) \) 映射到 \( (4, 5) \),这在 \( H \) 中存在。
- 边 \( (e, b) \) 映射到 \( (5, 2) \),这在 \( H \) 中存在。
在这个例子中,映射 \( f \) 是一个有效的同构映射,因为它保留了边的结构,说明图 \( G \) 和图 \( H \) 是同构的。
### 总结
- **图的同构** 需要存在一个顶点的双射,使得图的每条边在两个图中都有对应的边,并且这种映射完全保留了图的结构。
- **例子 1** 展示了两个完全图 \( K_3 \) 的同构,它们的结构完全相同,但顶点标签不同。
- **例子 2** 展示了两个具有不同标签但结构相同的图,它们之间的映射也是同构的。
通过这些例子,可以看到图的同构不仅考虑了图的结构,而且还允许不同的顶点标签,只要边的连接关系被保留。
相关文章:
图的同态Graph Homomorphism与同构Graph Isomorphism
图的同态Graph Homomorphism 图的同态(Graph Homomorphism)是图论中的一个重要概念,用于描述图之间的一种映射关系。图的同态描述了一个图如何通过映射保留其边的结构。 ### 图的同态定义 设有两个图 \( G (V_G, E_G) \) 和 \( H (V_H, …...

使用 Python 对雷达卫星 sar 图像进行降噪的三种方法
合成孔径雷达 (SAR) 图像广泛应用于各种领域(航空航天、军事、气象等)。问题是这种图像在其原始格式中受到噪点的影响。虽然这些图像通常也是沉重的文件,但从科学的角度来看,有效地对其进行去噪的任务似乎既具有挑战性,又在现实世界中非常有用。 卫星图像有两大类: 光学…...

C# Unity 面向对象补全计划 之 初识继承方法与多态
本文仅作学习笔记与交流,不作任何商业用途,作者能力有限,如有不足还请斧正 本系列旨在通过补全学习之后,给出任意类图都能实现并做到逻辑上严丝合缝 1.继承方法 C# & Unity 面向对象补全计划 之 继承(字段与属性&…...
突破PyCharm索引瓶颈:提升文件索引速度的策略
突破PyCharm索引瓶颈:提升文件索引速度的策略 PyCharm作为Python开发者的首选IDE,以其强大的功能和灵活的配置而广受好评。然而,当处理大型项目或复杂文件结构时,文件索引慢的问题可能会显著降低开发效率。本文将提供一系列优化技…...
体素相关的快速计算
“体素”通常是指在三维空间中具有固定尺寸和位置的小立方体单元。 体素的优点包括: 易于处理和计算:在计算机图形学和三维建模中,体素的结构相对简单,计算和操作较为方便。能精确表示物体的内部结构:对于一些需要了…...

Python 爬虫项目实战(二):爬取微博热搜榜
前言 网络爬虫(Web Crawler),也称为网页蜘蛛(Web Spider)或网页机器人(Web Bot),是一种按照既定规则自动浏览网络并提取信息的程序。爬虫的主要用途包括数据采集、网络索引、内容抓…...

文件解析漏洞复现
一、IIS 6.X 1.在网站目录创建文件夹名为xxx.asp/xxx.asa 文件夹,里面的任意文件都会被当作asp文件执行 创建1.asp 访问 2.ooo.asp.jpg会被当做asp文件执行 创建一个ooo.asp;.jpg 访问 二、IIS 7.X 上传1.jpg文件在网址后/.php可以成功执行 写一个1.jpg文件内容…...
git push报错 pre-receive hook declined
今天使用git提交的代码的时候,不然报错 pre-receive hook declined提交不上去,昨天还好好的。 经过检查发现,原来对应的分支被leader设置成受保护分支了,导致代码提交不上去。 然后在git管理平台取消分支保护,或者将我…...
打造个性化代码审查工具:在Perl中实现自定义审查的艺术
打造个性化代码审查工具:在Perl中实现自定义审查的艺术 代码审查是软件开发过程中的关键环节,它有助于提高代码质量和发现潜在缺陷。Perl作为一种灵活的编程语言,提供了丰富的特性,使得在Perl中实现自定义的代码审查工具成为可能…...

RabbitMq架构原理剖析及应用
文章目录 RabbitMQ 架构组件1. **Broker** (Broker Server)2. **Exchange**3. **Queue**4. **Producer** (消息生产者)5. **Consumer** (消息消费者)6. **Virtual Hosts** (虚拟主机) 工作流程内部原理1. **队列管理**2. **集群**3. **持久化与内存**4. **性能优化** 高级特性1…...
c# 对接第三方接口实现签名
官网文档要求如下: Sign算法说明 举例:假设请求参数键值对如下 appkey : test2-xx page_no : 0 end_time : 2016-08-01 13:00:00 start_time : 2016-08-01 12:00:00 page_size : 40 sid : test2 timestamp : 1470042310 第一步 对数所有请求参数按照…...

数学建模评价类模型—层次分析法(无数据情况下)
目录 前言 一、评价类问题概述 二、AHP建模流程 1、过程描述 2、层次分析法—Matlab代码 三、权重计算 1、算术平均法 2、几何平均法 3、特征值法 目录 文章目录 前言 一、评价类问题概述 二、AHP建模流程 1、过程描述 2、层次分析法—Matlab代码 三、权重计算 算术平均法 前言…...

模拟实现strcat(字符串追加)
1.我们要知道stcat的作用是什么,字符串追加。 2.我们进行模仿,我们先将arr1不断,直到“\0”,我们加在后面。 //模拟实现strcat(字符串追加) char* my_strcat(char* arr1, const char* arr2) {assert(arr1 && arr2);char ret arr1;…...
HTTP简单概述
一. HTTP HTTP(HyperText Transfer Protocol)是用于在客户端和服务器之间传输超文本数据(如HTML)的应用层协议。它是万维网的基础协议,定义了浏览器和服务器之间如何请求和传输文档。HTTP有多个版本,每个版…...
掌握PyCharm代码片段管理器:提升编码效率的秘诀
掌握PyCharm代码片段管理器:提升编码效率的秘诀 PyCharm作为业界领先的集成开发环境(IDE),提供了许多便利的功能来提升开发者的编码效率,其中之一就是代码片段管理器。代码片段管理器允许开发者保存、管理和重用代码模…...

MyBatis动态代理和映射器
目录 1、映射器简介 (1)什么是mapper动态代理? (2)动态代理的规范 (3)如何使用动态代理 (4)为什么学映射器 (5)映射器与接口 (…...

ShardingSphere中的ShardingJDBC常见分片算法的实现
文章目录 ShardingJDBC快速入门修改雪花算法和分表策略核心概念分片算法简单INLINE分片算法STANDARD标准分片算法COMPLEX_INLINE复杂分片算法CLASS_BASED自定义分片算法HINT_INLINE强制分片算法 注意事项 ShardingJDBC Git地址 快速入门 现在我存在两个数据库,并…...

SpringBoot整合Flink CDC实时同步postgresql变更数据,基于WAL日志
SpringBoot整合Flink CDC实时同步postgresql变更数据,基于WAL日志 一、前言二、技术介绍(Flink CDC)1、Flink CDC2、Postgres CDC 三、准备工作四、代码示例五、总结 一、前言 在工作中经常会遇到要实时获取数据库(postgresql、m…...
ThinkPHP事件的使用
技术说明 1.ThinkPHP版本:支持6.0、8.0 2.使用场景:用户登陆后日志记录、通知消息发送等主流程、次流程分离等场景 3.说明:网上很多帖子说的不明不白的,建议大家自己手动尝试总结一下 4.事件手动绑定的时候,一定要…...

【Nuxt】服务端渲染 SSR
SSR 概述 服务器端渲染全称是:Server Side Render,在服务器端渲染页面,并将渲染好HTML返回给浏览器呈现。 SSR应用的页面是在服务端渲染的,用户每请求一个SSR页面都会先在服务端进行渲染,然后将渲染好的页面…...

UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...

接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...

MySQL的pymysql操作
本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...

Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践
前言:本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中,跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南,你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案,并结合内网…...