当前位置: 首页 > news >正文

java算法day28

java算法day28

  • 300 最长递增子序列
  • 136 只出现一次的数字
  • 169 多数元素
  • 234 回文链表
  • 53 最大子数组和

300 最长递增子序列

这个是记忆化搜索的代码。是从递归改过来的。
这题显然是要用dp做比较合适。因为很容易看到原问题与子问题之间的关系。

还是从后往前看。
然后可以利用选与不选,或者选哪个。这两种方式来进行拆分,然后进行递归。

class Solution {int[] memo;public int lengthOfLIS(int[] nums) {if(nums==null||nums.length==0){return 0;}int n = nums.length;memo = new int[n];int maxLen = 0;for(int i = n-1;i>=0;i--){maxLen = Math.max(maxLen,dfs(nums,i));}return maxLen;}int dfs(int[] nums,int index){if(index == 0){return 1;}if(memo[index]!=0){return memo[index];}int maxLen = 1;for(int i = index-1;i>=0;i--){if(nums[i]<nums[index]){maxLen = Math.max(maxLen,dfs(nums,i)+1);}}memo[index] = maxLen;return maxLen;}}

如果你熟悉了递归转记忆化搜索转动态规划这个模式。那么可以直接来看动态规划怎么写了。
如果你懂这个过程,那么完全可以看懂递归模板这样做的原因。以及找到这些相关因素到底能有什么用。详细的总结我写在最后面那个题了。我们来看这题dp怎么做

状态定义:
dp[i]的值代表nums以nums[i]结尾的最长子序列的长度。
状态转移方程。


136 只出现一次的数字

思路:
拿到题目首先看到题目的含义,就想到了统计数字出现次数,那么就想到了Hash。但是题目不让用额外的空间,那么哈希没用了。
那么往不用空间复杂度想,我又想到了排序,但是排序最快也要o(nlogn),题目又要用o(n)时间复杂度,于是排序也没有了。

然后去看题解了。
这个解法完全是因为题目的含义才能解出来:
除了某个元素只出现一次之外,其余元素均出现2次。

这非常符合位运算的性质。你要是知道这个性质,你也可以做:
既满足时间复杂度又满足空间复杂度,就要提到位运算中的异或运算 XOR,主要因为异或运算有以下几个特点:
一个数和 0 做 XOR 运算等于本身:a⊕0 = a
一个数和其本身做 XOR 运算等于 0:a⊕a = 0
XOR 运算满足交换律和结合律:a⊕b⊕a = (a⊕a)⊕b = 0⊕b = b

由于满足交换律和结合律,那么按顺序遍历一遍进行异或运算,那么最后出现两次的肯定异或得到0了。
最后的情况肯定是这个单独的出现的元素异或0得到他本身,返回这个结果就结束了。

class Solution {public int singleNumber(int[] nums) {if(nums.length == 1){return nums[0];}int length = nums.length;//取第一个元素就开始遍历,然后返回最后的结果。int ans = nums[0];for(int i = 1;i<length;i++){ans^=nums[i];}return ans;}
}

169 多数元素

那道题想到两个想法:
1、哈希,2、排序。

class Solution {public int majorityElement(int[] nums) {Map<Integer,Integer> map = new HashMap<>();int length = nums.length;for(int i = 0;i<length;i++){if(map.containsKey(nums[i])){int value = map.get(nums[i]);map.put(nums[i],value+1);}else{map.put(nums[i],1);}}int target = length/2;for(Map.Entry<Integer,Integer> entry : map.entrySet()){int value = entry.getValue();if(value > target){return entry.getKey();}}return 0;}
}

最优解
摩尔投票

思路:
候选人candNum初始化为nums[0],票数count初始化为1。
当遇到与candNum相同的数,则票数count=count+1。
否则票数-1。

一旦count为0时,更换候选人。
遍历完数组之后,candNum即为最终答案。

原理解释:
该方法属于投票法
投票法是遇到相同的则票数+1,不同的票数-1。且众数元素的个数大于总元数的一半,其余元素的个数肯定小于一般。

因此多数元素的个数-其余元素的个数总和的结果肯定>=1。这就相当于按照这种抵消策略。最后肯定会剩余至少1个多数元素。

之前我脑子里一直有那种类似这样的例子:
1 2 1 3 1 4 1 5 。这个纯粹就是我少想了,一定是大于半数。注意是大于。所以这个思路完全行得通。

class Solution {public int majorityElement(int[] nums) {if(nums.length==1){return nums[0];}int length = nums.length;int candNum = nums[0];int count = 1;for(int i = 1;i<length;i++){if(count==0){candNum = nums[i];}if(nums[i]==candNum){count++;}else{count--;}}return candNum;}
}

234 回文链表

主要思路:
先找到中间节点:通过快慢指针,fast一次两步,slow一次一步。然后将后半段链表逆置。然后进行回文的逻辑判断即可。

关键点。其实不用考虑中间若是多一个节点的情况,多出来的那个节点完全不会比较到,因为没有比这个元素的机会,当少1个元素的链表遍历完的时候,我循环比较的逻辑就停止了。

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public boolean isPalindrome(ListNode head) {if(head.next==null){return true;}ListNode fast = head;ListNode slow = head;while(fast!=null && fast.next!=null ){slow = slow.next;fast = fast.next.next;}//此时slow已经在中。然后将后面的链表逆置了ListNode pre = null;ListNode cur = slow;while(cur!=null){//存后一个节点ListNode next = cur.next;cur.next = pre;pre = cur;cur = next;}//现在来进行回文的判断ListNode l1 = head;ListNode l2 = pre;while(l1!=null && l2!=null){if(l1.val!=l2.val){return false;}l1 = l1.next;l2 = l2.next;}return true;}
}

53 最大子数组和

有了前面的积累,我终于能直接看懂动态规划的题解了。也终于知道状态转移方程怎么用了。

这里可以总结一下心路历程:
看懂动态规划之前有这样的历程:首先动态规划不是上来就有的。首先应该是暴力递归解法。将递归树画出来后,我们可以发现可以优化的点,那就是递归的过程存在很多的重复计算,那这个时候就需要“备忘录”来存储重复的计算。那么这个时候我们对这颗树做优化,你会发现这个递归树突然就变成了o(n)的量级。从递归树来看,那直接就是一路归并,值指最优值。
而这个归并正是状态转移方程。所以为什么很多题解给个初始状态,给个状态转移方程就说这个题就做完了。所以说,有时感觉这个题有很多种走法,但偏偏为什么动态规划是最优走法,就是这个原因。

本题动态规划思路:
dp[i]表示以nums[i]结尾的最大子数组和。然后一般我们从后往前思考。

分类讨论:
我把这种推导过程称之为拼与不拼。不拼那么就重起一个子数组了。

情况1:nums[i] 单独组成一个子数组,那么dp[i] = nums[i]。这种情况是纯在的,比如-1,-2,-5,7,-2,-3。那么以7这个位置为结尾的最长子数组和应该只有7本身。
情况2:将nums[i]和前面的子数组拼起来,也就是以nums[i-1]结尾的最大子数组和之和添加nums[i]。那么此时dp[i] = f[i-1]+nums[i]。
那么这个原问题和子问题的关系就很明确了。
由于每个元素都有可能是最长子数组和的结尾元素。那么可写出这个递推公式
f[i] = max(f[i-1],0) + nums[i]。
自己理解一下这个公式,这个状态转移方程的意思就是上面的两种情况。
如果f[i-1]比0还小,那说明把前面的子数组加起来是没有收益的,那么就要重起一个子数组了,此时前面这个式子值为0。此时f[i] = nums[i]。

如果你是非常清楚dp的套路。那么我告诉你一个结论,然后一个公式你应该就做完了。
1、dp[i]表示以nums[i]结尾的最长子数组的和。
2、状态转移方程:
初始状态那么就是dp[0],那么就是以nums[0]结尾的最长子数组,那么dp[0]= nums[0]。
3、循环迭代计算dp数组,然后找出以哪个为值为结尾的子数组和最大。然后返回这个最大值。

class Solution {public int maxSubArray(int[] nums) {int[] dp = new int[nums.length];dp[0] = nums[0];int ans = dp[0];for(int i = 1;i<nums.length;i++){dp[i] = Math.max(dp[i-1],0) + nums[i];ans = Math.max(ans,dp[i]);}return ans;}
}

相关文章:

java算法day28

java算法day28 300 最长递增子序列136 只出现一次的数字169 多数元素234 回文链表53 最大子数组和 300 最长递增子序列 这个是记忆化搜索的代码。是从递归改过来的。 这题显然是要用dp做比较合适。因为很容易看到原问题与子问题之间的关系。 还是从后往前看。 然后可以利用选…...

vue实现歌词滚动效果

1.结构 <template><div class"lyricScroll"><div class"audio"><audio id"audio" src"./common/周传雄-青花1.mp3" controls></audio></div><div class"container" id"contai…...

【算法设计题】合并两个非递减有序链表,第1题(C/C++)

目录 第1题 合并两个非递减有序链表 得分点&#xff08;必背&#xff09; 题解 函数声明与初始化变量&#xff1a; 初始化合并链表的头节点&#xff1a; 合并两个链表&#xff1a; 处理剩余节点&#xff1a; 返回合并后的链表&#xff1a; 完整测试代码 &#x1f308;…...

Vue前端工程

创建一个工程化的vue项目 npm init vuelatest 全默认回车就好了 登录注册校验 //定义数据模型 const registerDataref({username:,password:,rePassword: }) //校验密码的函数 const checkRePassword(rule,value,callback)>{if (value){callback(new Error(请再次输入密…...

什么是药物临床试验?

药物临床试验是指在人体上进行的新药试验研究&#xff0c;旨在确定新药的疗效、安全性、药代动力学和药效学。临床试验不仅帮助确认药物是否对特定疾病或症状有效&#xff0c;还帮助识别和评估药物的副作用和风险。 药物临床试验&#xff08;Clinical Trial&#xff0c;CT&…...

编译和汇编的区别

一、编译 编译是将高级语言&#xff08;如C、C、Java等&#xff09;编写的源代码转换成计算机可以直接执行的低级语言&#xff08;通常是机器语言或汇编语言&#xff09;的过程 编译 —— 将人类可读的源代码转换为计算机可执行的指令集 编译过程 通常包括词法分析、语法分…...

C# 设计倒计时器、串口助手开发

文章目录 1. 实现一个简单的倒计时器开始、暂停2. 串口助手开发 1. 实现一个简单的倒计时器开始、暂停 namespace Timer {public partial class Form1 : Form{int count;//用于定时器计数int time;//存储设定的定时值bool parse false;//控制暂停计时public Form1(){Initiali…...

图论① dfs | Java | LeetCode 797,Kama 98 邻接表实现(未完成)

797 所有可能路径 https://leetcode.cn/problems/all-paths-from-source-to-target/description/ 输入&#xff1a;graph [[1,2],[3],[3],[]] 题目分析&#xff0c;这里 class Solution {//这个不是二维数组&#xff0c;而是listList<List<Integer>> res new Ar…...

Mac安装nvm以及配置环境变量

安装nvm brew install nvm安装成功后会出现这样一段话: Add the following to your shell profile e.g. ~/.profile or ~/.zshrc:export NVM_DIR"$HOME/.nvm"[ -s "/opt/homebrew/opt/nvm/nvm.sh" ] && \. "/opt/homebrew/opt/nvm/nvm.sh&q…...

AUTOSAR实战教程-使用DET来发现开发错误

2年之前因为在调试AUTOSAR存储协议栈的时候使用DET并没发现有用的信息,所以就武断下结论--这玩意没有用。活到老学到老吧,bug经历的多了,发现这玩意还挺有用的。说一下这个bug的背景。 在将时间同步报文改道CanTsync之后,由于这个AUTOSAR工具本身的问题以及配置工程师本身的…...

ZeroMQ(二):请求-响应模式,C和C++。

目录 请求响应基础 基本概念 工作流程 典型应用 请求-响应模式的特点 应用实例 优点 缺点 ZEROMQ C语言 2.1 服务器端代码&#xff08;Reply Server&#xff09; 2.2 客户端代码&#xff08;Request Client&#xff09; 3. 编译代码 4. 详细说明 ZEROMQ C 1. …...

【虚拟仿真】Unity3D中实现2DUI显示在3D物体旁边

推荐阅读 CSDN主页GitHub开源地址Unity3D插件分享简书地址QQ群:398291828大家好,我是佛系工程师☆恬静的小魔龙☆,不定时更新Unity开发技巧,觉得有用记得一键三连哦。 一、前言 这篇文章来实现2DUI显示在3D物体旁边,当我们需要在3D模型旁边显示2DUI的时候,比如人物的对…...

代码随想录 day 29 贪心

第八章 贪心算法 part03 134. 加油站 本题有点难度&#xff0c;不太好想&#xff0c;推荐大家熟悉一下方法二 https://programmercarl.com/0134.%E5%8A%A0%E6%B2%B9%E7%AB%99.html 135. 分发糖果 本题涉及到一个思想&#xff0c;就是想处理好一边再处理另一边&#xff0c;不…...

开源:LLMCompiler高性能工具调用框架

开源&#xff1a;LLMCompiler高性能工具调用框架 LLMCompilerLLMCompiler 框架图任务提取单元使用方式参考链接 LLMCompiler LLMCompiler 是一种 Agent 架构&#xff0c;旨在通过在DAG中快速执行任务来加快 Agent 任务的执行速度。它还通过减少对 LLM 的调用次数来节省 Tokens …...

【学习方法】高效学习因素 ① ( 开始学习 | 高效学习因素五大因素 | 高效学习公式 - 学习效果 = 时间 x 注意力 x 精力 x 目标 x 策略 )

文章目录 一、高效学习因素1、开始学习2、高效学习因素五大因素3、高效学习公式 - 学习效果 时间 x 注意力 x 精力 x 目标 x 策略 一、高效学习因素 1、开始学习 对于 学习差 , 调皮捣蛋 的学生 , 不要把 学习成绩差 的 原因 归因为 不爱学习 / 没有学习方法 , 可能是 还没有 …...

LeetCode Medium|【146. LRU 缓存】

力扣题目链接 题意&#xff1a;本题的题意就是希望我们设计一个满足 LRU 缓存的数据结构&#xff0c;LRU即最近最少使用。 需要我们实现 get 和 put 方法&#xff0c;即从缓存中获取值和设置缓存中值的方法。 还有一个约束条件就是缓存应当有容量限制&#xff0c;如果实现 put …...

(南京观海微电子)——LCD OTP(烧录)介绍

OTP OTP只是一种存储数据的器件&#xff0c;全写:ONETIMEPROGRAM。 OTP目的&#xff1a;提高产品的一致性 客户端的接口不支持和我们自己的产品IC之间通信&#xff0c;即不支持写初始化&#xff0c;所以产品的电学功能以及光学特性需要固化在IC中&#xff0c;所以需要我们来进行…...

[E二叉树] lc572. 另一棵树的子树(dfs+前中序判断+树哈希+树上KMP+好题)

文章目录 1. 题目来源2. 题目解析 1. 题目来源 链接&#xff1a;572. 另一棵树的子树 2. 题目解析 看到这个题目就感觉不简单&#xff0c;因为写了写 dfs 版本的&#xff0c;发现好像不太会… 还是简单粗暴一点&#xff0c;直接搞一个 前序中序&#xff0c;进行判断即可。我…...

C# 设计模式之简单工厂模式

总目录 前言 本文是个人基于C#学习设计模式总结的学习笔记&#xff0c;希望对你有用&#xff01; 1 基本介绍 简单工厂模式 定义&#xff1a;用于创建对象&#xff0c;将对象的创建与使用分离。 简单工厂模式中用于创建实例的方法是静态(static)方法&#xff0c;因而简单工厂…...

mac中dyld[5999]: Library not loaded: libssl.3.dylib解决方法

需要重新安装下openssl3.0版本 brew reinstall openssl3.0 安装后执行还是报错&#xff0c;需要找到openssl的安装路径 /opt/homebrew/Cellar/openssl3.0/3.0.14/lib/ 将libssl.3.dylib和libcrypto.3.dylib拷贝到自己的二进制文件同目录下&#xff0c;再执行二进制文件就可…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

4. TypeScript 类型推断与类型组合

一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式&#xff0c;自动确定它们的类型。 这一特性减少了显式类型注解的需要&#xff0c;在保持类型安全的同时简化了代码。通过分析上下文和初始值&#xff0c;TypeSc…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...