论网络流(最大流篇)--新手入门超详解--包教包会
论网络流--新手入门超详解--包教包会
- 1 前言
- 2 什么是最大流
- 3最大流问题的求解
- (1)问题转化--增广路的引入
- (2)走回头路--EK算法
- (3)EK的弊端
- (4)化图为树--DINIC算法
- 4后记
1 前言
网络流是图论算法,阅读本文需要以下前置知识
1搜索算法(dfs+bfs)
2图的存储
3最短路径算法(dijkstra,floyd,spfa)
所有数学公式均使用Latex并附有证明
作为网络流系列的第一张,我们从网络流的基础–最大流开始
2 什么是最大流
我们把网络流这个词拆开来看
网络,指的就是图,在网络流问题中大多为有向图,而且有边权(容量)
流,顾名思义,就是向水一样,从一个水源(源点)流出,流向终点(汇点)
那么会有多少水流向终点呢?这就是流量
这么说肯定不好理解,我们从图的最简单形态–链出发
上图片

可以把源点看做自来水厂,汇点看做你家,中间的点就是中转站,边就是水管,水管当然不是无限大的,肯定会有容量(即边权,图上用蓝色数字标出)
假设你需要 1 1 1个单位的水,自来水厂给你供水,每个水管中流的水量在下图中用绿色标注

显然,每个水管中的水量都小于容量,水管指定炸不了
流量为 1 1 1,即你最后收到了 1 1 1个单位的水
流量可以达到 1 1 1,没有任何一个水管炸掉,这就是可行流
但是这个没啥用…流量为 0 0 0还是可行流呢
我们考虑对于一个所有可行流的集合,求其中流量最大的一个
对于这张图,答案显然了,流量为2,在下图中用橙色标出
可以看到容量为 2 2 2的水管装满水了,不能再多了,这就是最大流
3最大流问题的求解
(1)问题转化–增广路的引入
假设图是一条链,答案肯定为容量最小边的容量,要不然就炸了
但是如果图不是一条链呢
我们把图变成链不就好了
在图上取一条路径,不就形成了链吗
我们还是举上面的例子,自来水厂给你家供水,肯定是选取一条路径将水送到你家,但是如果不够用,自来水厂就会再选取一条路径给你家供水
这就是增广路–一条连接源点和汇点,且流量未满的路径
假设现在已经找到了一条增广路,我们该怎么更新
根据上面的例子,自来水厂把水送到你家,肯定占用了水管,有的水管占满了,但是有的水管还有空间
我们求出增广路的流量–根据刚才链上问题的结论–就是这些边中容量的最小值
我们将路径上每一条边都减去这个占用的容量即可
这就构成了人们常说的残余网络
都减去容量了,我们只要用bfs求出原点到汇点的任意路径即可
如果不连通,算法就结束
这个算法好不好使,手动模拟就知道,请看图片

bfs求出一条增广路为 1 − > 2 − > 3 − > 4 1->2->3->4 1−>2−>3−>4
减去流量得下图

找不出增广路了,答案为 1 1 1
但是显然答案就不是 1 1 1,选取 1 − > 2 − > 4 1->2->4 1−>2−>4, 1 − > 3 − > 4 1->3->4 1−>3−>4两条增广路,答案显然为 2 2 2,我们的算法就这样炸了
(2)走回头路–EK算法
我们发现,无论怎么选取增广路,我们很难找出一个贪心策略一次得到最优解,选取不同增广路得到的结果不同
如果我们能走回头路多好
但是减去容量是算法成立的基础,我们不能动这一步
所以,我们要引入最大流的精髓–反向边
还是那个例子,自来水厂给你家送水,已经找到一条路径
但是,你说水不够,再给我送点,然而此时水管被占用了
那咋办,你直接把水送回去呗
所以,减去的容量,我们建反向边,把水送回去,就是走回头路
回归问题,我们求出 1 − > 2 − > 3 − > 4 1->2->3->4 1−>2−>3−>4的增广路中,图变成了这样
(反向边用红色标出)

这下,我们可以再次找到一条增广路 1 − > 3 − > 2 − > 4 1->3->2->4 1−>3−>2−>4
得到结果 2 2 2,AC了,那么,这个算法为什么是对的
其中涉及到了边 2 − > 3 2->3 2−>3,但是如果我们手动模拟,就会发现根本不能取这条边
我们发现 3 − > 2 3->2 3−>2这条反向边本来就代表着走回头路
但是正常 3 − > 4 3->4 3−>4这条边已经走过了,既然你替我走了,我就替你走,直接去走路径 2 − > 4 2->4 2−>4,这就相当于交换了位置,结果不改变
这就是EK算法,最大流问题的基础算法
附代码(c++)(问题参考洛谷P2740)
#include<bits/stdc++.h>
using namespace std;
int a[1145][1145],dist[114514],n,m,start,endd;
queue<int>q;
bool vis[114514];
bool bfs(int s,int t){memset(vis,false,sizeof(vis));memset(dist,-1,sizeof(dist));vis[s] = true;dist[s] = s;while(!q.empty()){q.pop();}q.push(s);while(!q.empty()){int x = q.front();q.pop();for(int i = 1;i<=n;i++){if(i!=x&&!vis[i]&&a[x][i]>0){q.push(i); dist[i] = x;vis[i] = true;if(i==t){return true; }}}}return false;
}
int EK(int s,int t){int ans = 0;while(bfs(s,t)){int mins = 0x3f3f3f3f;for(int i = t;i!=s;i = dist[i]){mins = min(mins,a[dist[i]][i]);}for(int i = t;i!=s;i = dist[i]){a[i][dist[i]]+=mins;a[dist[i]][i]-=mins;}ans+=mins;}return ans;
}
int main() {cin>>n>>m>>start>>endd;for(int i = 1;i<=m;i++){int u,v,w;cin>>u>>v>>w; a[u][v]+=w;}int ans = EK(start,endd);cout<<ans;return 0;
}
(3)EK的弊端
EK算法是正确的,但是时间复杂度非常玄学
比如说这种图

如果使用EK算法, 2 − > 3 2->3 2−>3那条边的方向会不断切换,这样下去将会找 200 200 200次增广路
直接TLE
EK算法可以优化,每次处理出最短路径,但是这也没有解决EK慢的问题,尤其是在更加稠密的图,EK的复杂度显然不够优秀
所以,为了解决这种问题,DINIC诞生了
(4)化图为树–DINIC算法
EK一次只能找一条增广路
其实就是把图变成链
如果我们想要从源点出发一次找多条增广路呢?
我们把图变成树,怎么变?
显然,用bfs分层,形成的就是一棵树了
然而进行一次bfs不一定正确
那进行多少次bfs呢?这个就很玄学
每次的残余网络的分层都不相同,所以,可以通过一直进行bfs知道搜索不出增广路
有了搜索树,这就可以引入dfs了,一次搜更多的增广路
不仅提高了稠密图中的时间复杂度,还防止了反复更新增广路的问题
这就是DINIC,在bfs建出的搜索树上跑dfs
代码中的体现就是储存每个点的层次
DINIC还有一个著名的当前弧优化
因为搜索树上有重复点,这些重复点连的边已经更新了的话,就不会再更新,所以我们标记一个 c u r cur cur数组即可
其实,在DINIC之外还有ISAP等算法
但是在信奥中有个不成文的规定,不能卡DINIC
新手可以先掌握DINIC
附代码(c++)
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int INF = 0x3f3f3f3f;
ll nxt[114514],to[114514],w[114514];
ll idx = 1,head[114514];
ll n,m,s,t;
ll dep[114514],cur[114514];
ll ans = 0;
queue<ll> q;
void addedge(ll u,ll v,ll ww){idx++;nxt[idx] = head[u];to[idx] = v;w[idx] = ww;head[u] = idx;
}
bool bfs(){for(int i = 1;i<=n;i++){dep[i] = INF;}while(!q.empty()){q.pop();}q.push(s);dep[s] = 0;cur[s] = head[s];while(!q.empty()){ll x = q.front();q.pop();for(ll i = head[x];i!=0;i = nxt[i]){ll y = to[i];if(w[i]>0&&dep[y]==INF){q.push(y);cur[y] = head[y];dep[y] = dep[x]+1;if(y==t){return true;}}}}return false;
}
ll dfs(ll x,ll res){if(x==t){return res;}ll sum = 0,k,i;for(i = cur[x];i&&res;i = nxt[i]){cur[x] = i;ll y = to[i];if(w[i]>0&&(dep[y]==dep[x]+1)){k = dfs(y,min(res,w[i]));if(!k){dep[y] = INF;}w[i]-=k;w[i^1]+=k;sum+=k;res-=k;}}return sum;
}
void DINIC(){while(bfs()){ans+=dfs(s,INF);}
}
signed main(){cin>>n>>m>>s>>t;for(ll i = 1;i<=m;i++){ll u,v,ww;cin>>u>>v>>ww;addedge(u,v,ww);addedge(v,u,0);}DINIC();cout<<ans;return 0;
}
4后记
本蒟蒻的第一篇博客讲的是最短路,如今20篇过去了,这是第21篇
我这个大蒟蒻终于学会了网络流
本文作者是蒟蒻,如有错误请各位神犇指点
森林古猿出品,必属精品,请认准CSDN森林古猿1
相关文章:
论网络流(最大流篇)--新手入门超详解--包教包会
论网络流--新手入门超详解--包教包会 1 前言2 什么是最大流3最大流问题的求解(1)问题转化--增广路的引入(2)走回头路--EK算法(3)EK的弊端(4)化图为树--DINIC算法 4后记 1 前言 网络…...
环境搭建:全面详尽的 MongoDB Shell MongoDB Server介绍、安装、验证与配置指南(以 Windows 系统为主)
环境搭建:全面详尽的 MongoDB Shell & MongoDB Server介绍、安装、验证与配置指南(以 Windows 系统为主) MongoDB 是一个基于文档的 NoSQL 数据库,以其高性能、灵活性和可扩展性而受到广泛欢迎。本文将带您完成 MongoDB 的安装…...
使用 OpenSearch 的 K-NN 向量搜索来增强搜索功能
使用 OpenSearch 的 K-NN 向量搜索来增强搜索功能 许多应用程序都依赖于提供精确且相关的搜索结果的能力。尽管传统关系数据库的全文搜索功能在某些情况下已经足够,但这些数据库在从文本中提取语义含义或搜索结构化程度较低的数据方面可能会出现不足。在这篇博文中&…...
Less-2(闭合)
我们使用第一关的测试方法尝试一下,打咩 直接看源码,看到,尝试一下闭合 <?php ini_set("display_errors", 0); $str $_GET["keyword"]; echo "<h2 aligncenter>没有找到和".htmlspecialchars($str)."相…...
mysql介绍
MySQL是一种开源的关系型数据库管理系统(RDBMS),广泛用于存储和管理数据。它支持多种操作系统,如Linux、Windows、MacOS等。MySQL的特点包括: 1.开源免费:MySQL是开源的,可以免费使用和分发。 2…...
【ROS学习】ROS中 use_sim_time 参数的含义与作用
文章目录 写在前面一、背景描述二、 use_sim_time 参数的含义与作用三、举例说明1. 不设置use_sim_time (也即 use_sim_time false),播放数据集使用rosbag play **.bag 2. 不设置use_sim_time (也即 use_sim_time false),播放数据集使用rosbag play **…...
python-查找元素3(赛氪OJ)
[题目描述] 有n个不同的数,从小到大排成一列。现在告诉你其中的一个数x,x不一定是原先数列中的数。你需要输出最后一个<x的数在此数组中的下标。输入: 输入共两行第一行为两个整数n、x。第二行为n个整数,代表a[i]。输出&#x…...
苹果 Safari 的隐私保护与广告追踪问题 :技术进展与挑战
隐私保护的进展与挑战 近年来,浏览器行业在隐私保护技术方面取得了显著进展,尤其是在广告追踪领域。谷歌的 Chrome 浏览器推广了隐私沙盒,通过将用户可能感兴趣的主题分类并推送给广告商。Mozilla Firefox 和 Meta Facebook 则推出了一种名为…...
pytest之fixture
Pytest 中 Fixture 的 yield 用法 在软件测试中,设置和清理测试环境是一个重要的环节。Pytest 作为一个功能强大的测试框架,通过 Fixture 机制简化了这一过程。特别是yield语句的使用,使得 Fixture 能够在测试前进行设置,并在测试…...
Rancher
文章目录 Rancher1. 安装和配置2. 服务部署和管理3. 容器自动化缩容和扩容 Rancher Rancher 是一个开源的企业级容器管理平台,旨在简化容器化应用的部署、管理和运维。它支持多种容器编排引擎,如 Kubernetes、Docker Swarm 等,并提供了统一的…...
Wordpress建站问题记录
从一月到七月因为工作的情况没有进行太深入的开发,想着整理一下把做一个独立站把博客多个渠道发布一下,遇到几个问题在这里记录一下. 先写一下我的配置 系统: centos7 php: 7.4 wordpress: 6.6.1 mysql:8.0.6 1. HTTP 500 Internal 这个问题出现在我将wordpress的文件夹全部…...
JavaFx中通过线程池运行或者停止多个周期性任务
在JavaFX中,要实现点击按钮启动多个周期性任务并通过多线程执行,并在任务结束后将结果写入多个文本组件中,同时提供另一个按钮来停止这些任务,你可以使用ScheduledExecutorService来管理周期性任务,并使用AtomicBoolea…...
使用RabbitMQ实现异步支付状态通知
在支付系统中,如何确保支付状态的准确传递和处理显得尤为重要。今天,我们将以一个支付流程为例,探讨在引入RabbitMQ前后的实现和优化。 改造前 在引入RabbitMQ之前,我们通常会直接在支付方法中完成所有的操作。这包括查询支付单…...
[最短路dijkstra],启动!!!
总时间复杂度为 O ( ( n m ) log m ) P4779 【模板】单源最短路径(标准版) #include<bits/stdc.h> #define ll long long #define fi first #define se second #define pb push_back #define PII pair<int,int > #define I…...
Java企业微信服务商代开发获取AccessToken示例
这里主要针对的是企业微信服务商代开发模式 文档地址 可以看到里面大致有三种token,一个是服务商的token,一个是企业授权token,还有一个是应用的token 这里面主要有下面几个参数 首先是服务商的 corpid 和 provider_secret ,这个可…...
How does age change how you learn?(2)年龄如何影响学习能力?(二)
Do different people experience decline differently? 不同人经历的认知衰退会有不同吗? Do all people experience cognitive decline uniformly?Or do some people’s minds slip while others stay sharp much longer? 所有人经历的认知衰退都是一样的吗?还是有些人…...
可验证随机函数 vrf 概述
一、什么是VRF 背景: 在传统的区块链中,常用的随机算法是基于伪随机数生成器(Pseudorandom Number Generator,PRNG)的。PRNG是一种确定性算法,它根据一个初始种子生成一个看似随机的序列。在区块链中,通常使用的是伪随机数序列来选择区块的创建者、确定验证节点的轮换…...
鸿蒙双向绑定组件:TextArea、TextInput、Search、Checkbox,文本输入组件,图案解锁组件PatternLock
对象暂不支持双向绑定, 效果: 代码: Entry Component struct MvvmCase {StateisSelect: boolean falseStatesearchText: String ""StateinputText: string ""StateareaText: string ""build() {Grid() {G…...
JS 算法 - 计数器
theme: smartblue 题目描述 给定一个整型参数 n,请你编写并返回一个 counter 函数。这个 counter 函数最初返回 n,每次调用它时会返回前一个值加 1 的值 ( n , n 1 , n 2 ,等等)。 示例 1: 输入: n 10 ["cal…...
JavaScript基础——JavaScript运算符
赋值运算符 算术运算符 一元运算符 三元/三目运算符 比较运算符 逻辑运算符 运算符优先级 在JavaScript中,常见的运算符可以包括赋值运算符、一元运算符、算术运算符(二元运算符)、三元/三目运算符、比较运算符、逻辑运算符等࿰…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...
