白骑士的PyCharm教学实战项目篇 4.3 自动化测试与持续集成
系列目录
上一篇:
在现代软件开发过程中,自动化测试与持续集成(CI)是确保代码质量和快速交付的关键环节。PyCharm作为一款强大的集成开发环境(IDE),为自动化测试和持续集成提供了全面的支持。本文将详细介绍如何在PyCharm中配置自动化测试工具,并探讨持续集成的实践方法。
自动化测试工具配置
自动化测试是软件开发中确保代码正确性的重要手段。通过自动化测试,可以快速发现代码中的错误和潜在问题,提高开发效率和代码质量。
配置测试框架
选择测试框架
- 常用的测试框架包括unittest、pytest和nose。本文以pytest为例,介绍其配置和使用方法。
安装pytest
- 在PyCharm的终端或通过 “File” -> “Settings” -> “Project: <project_name>” -> “Python Interpreter” 添加pytest库:
pip install pytest
配置pytest
- 在项目根目录下创建pytest配置文件 'pytest.ini',进行相关配置:
[pytest]testpaths = tests
编写测试用例
创建测试目录和测试文件
- 在项目根目录下创建'tests'目录,并在其中创建测试文件 'test_example.py':
# tests/test_example.py
def test_addition():assert 1 + 1 == 2def test_subtraction():assert 2 - 1 == 1
运行测试用例
- 在PyCharm中运行测试用例,可以通过右键点击测试文件或测试目录,选择 “Run 'pytest in <filename>'” 来执行测试。
- 查看测试结果和详细报告,修复测试失败的代码。
集成代码覆盖率工具
安装coverage库
- 在PyCharm的终端或通过 “File” -> “Settings” -> “Project: <project_name>” -> “Python Interpreter” 添加coverage库:
pip install coverage
运行代码覆盖率报告
- 使用coverage运行测试,并生成覆盖率报告:
coverage run -m pytest
coverage report
coverage html
- 在PyCharm中打开生成的HTML报告文件 'htmlcov/index.html',查看代码覆盖率。
持续集成实践
持续集成(CI)是一种软件开发实践,旨在通过频繁地将代码集成到主干中,并自动化构建和测试,快速发现和解决问题,提高开发效率和代码质量。
配置CI工具
选择CI平台
- 常用的CI平台包括GitHub Actions、GitLab CI、Jenkins和Travis CI。本文以GitHub Actions为例,介绍其配置和使用方法。
创建GitHub Actions工作流
- 在项目根目录下创建 '.github/workflows' 目录,并在其中创建工作流文件 'ci.yml':
name: CIon: [push, pull_request]jobs:build:runs-on: ubuntu-lateststeps:- uses: actions/checkout@v2- name: Set up Pythonuses: actions/setup-python@v2with:python-version: 3.x- name: Install dependenciesrun: |python -m pip install --upgrade pippip install pytest coverage- name: Run testsrun: |coverage run -m pytestcoverage reportcoverage xml- name: Upload coverage to Codecovuses: codecov/codecov-action@v2with:file: ./coverage.xml
配置代码覆盖率上传
- 注册并配置Codecov账户,获取上传token,并将其添加到GitHub仓库的Secrets中。
- 在 'ci.yml' 工作流文件中配置 'codecov' 步骤,上传覆盖率报告。
持续集成工作流
代码提交与推送
- 开发者在本地进行代码开发和测试,确保所有测试用例通过后,将代码提交到GitHub仓库。
- 触发GitHub Actions工作流,自动执行构建和测试步骤。
自动化构建与测试
- GitHub Actions工作流在每次代码推送或拉取请求时自动运行,执行安装依赖、运行测试、生成覆盖率报告等步骤。
- 开发者可以在GitHub上查看工作流运行状态和结果,及时发现和解决问题。
报告与通知
- 配置通知机制,如邮件通知、Slack通知等,当工作流失败或成功时,及时通知相关开发人员。
- 通过覆盖率报告和测试结果,不断改进代码质量和测试覆盖率。
总结
通过本文的学习,你应该掌握了如何在PyCharm中配置自动化测试工具,编写和运行测试用例,生成代码覆盖率报告,并在GitHub Actions中配置持续集成工作流。自动化测试与持续集成是现代软件开发中的重要实践,通过这些工具和方法,可以显著提升开发效率和代码质量。希望本文能够帮助你更好地利用PyCharm进行自动化测试与持续集成,成功完成高质量的软件开发项目。
下一篇:
相关文章:
白骑士的PyCharm教学实战项目篇 4.3 自动化测试与持续集成
系列目录 上一篇: 在现代软件开发过程中,自动化测试与持续集成(CI)是确保代码质量和快速交付的关键环节。PyCharm作为一款强大的集成开发环境(IDE),为自动化测试和持续集成提供了全面的支持。本…...

权限模块开发+权限与角色关联(完整CRUD)
文章目录 🌞 Sun Frame:SpringBoot 的轻量级开发框架(个人开源项目推荐)🌟 亮点功能📦 spring cloud模块概览常用工具 🔗 更多信息1.easycode生成代码1.配置2.AuthPermissionDao.java剪切到mapp…...

llama神经网络的结构,llama-3-8b.layers=32 llama-3-70b.layers=80; 2000汉字举例说明
目录 llama-3-8b.layers=32 llama-3-70b.layers=80 llama神经网络的结构 Llama神经网络结构示例 示例中的输入输出大小 实际举例说明2000个汉字文本数据集 初始化词嵌入矩阵 1. 输入层 2. 嵌入层 3. 卷积层 4. 全连接层 llama-3-8b.layers=32 llama-3-70b.laye…...
单细胞数据怎么表现genes mRNA表达的热图?
愿武艺晴小朋友一定得每天都开心 #热图 library("ComplexHeatmap") exp <- AverageExpression(subset(fasting_memory, Celltype %in% c("Pre-B")), layer = "data", #即CPM值 features …...

Java聚合快递对接云洋系统小程序源码
🚀【物流新纪元】聚合快递如何无缝对接云洋系统,效率飙升秘籍大公开!✨ 🔍 开篇揭秘:聚合快递的魅力所在 Hey小伙伴们,你是否还在为多家快递公司账号管理繁琐、订单处理效率低下而头疼?&#…...
MySQL——数据表的基本操作(三)修改数据表
有时候,希望对表中的某些信息进行修改,这时就需要修改数据表。所谓修改数据表指的是修改数据库中已经存在的数据表结构,比如,修改表名、修改字段名、修改字段的数据类型等。在 MySQL中,修改数据表的操作都是使用 ALTER…...

医学图像分割的基准:TransUnet(用于医学图像分割的Transformer编码器)器官分割
1、 TransUnet 介绍 TransUnet是一种用于医学图像分割的深度学习模型。它是基于Transformer模型的图像分割方法,由AI研究公司Hugging Face在2021年提出。 医学图像分割是一项重要的任务,旨在将医学图像中的不同结构和区域分离出来,以便医生可…...

java-swing编写学生成绩查询管理系统
本文是本人大二上实训项目-学生成绩查询管理系统,采用本项目使用Java、MySQL技术。界面框架由Java Swing搭建,用JDBC实现Java与MySQL的连接。 本项目适合初学java和mysql的同学,来做一些小项目来提升自己,因为兴趣所以想要做去尝…...
volatile浅解
volatile修饰的变量有两个特点 线程中修改了自己工作内存中的副本后,立即将其刷新到主内存工作内存中每次读取共享变量时,都会去主内存中重新读取,然后拷贝到工作内存 内存 -> CPU Cache -> CPU 如果没有volatile那么就会继续读取缓存…...

世媒讯带您了解什么是媒体邀约
什么是媒体邀约?其实媒体邀约是一种公关策略,旨在通过邀请媒体记者和编辑参加特定的活动、发布会或其他重要事件,以确保这些活动能够得到广泛的报道和关注。通过这种方式,企业和组织希望能够传达重要信息,提高品牌知名…...
[Kimi 笔记]“面向搜索引擎”
"面向搜索引擎"(Search Engine-Oriented,SEO-Oriented 或 SEO-Friendly)通常指的是在设计和开发网站时,采取一系列措施来优化网站内容和结构,以便提高网站在搜索引擎结果页面(SERP)中…...

如何在亚马逊云科技AWS上利用LoRA高效微调AI大模型减少预测偏差
简介: 小李哥将继续每天介绍一个基于亚马逊云科技AWS云计算平台的全球前沿AI技术解决方案,帮助大家快速了解国际上最热门的云计算平台亚马逊云科技AWS AI最佳实践,并应用到自己的日常工作里。 在机器学习和人工智能领域,生成偏差…...

订单定时状态处理业务(SpringTask)
文章目录 概要整体架构流程技术细节小结 概要 订单定时状态处理通常涉及到对订单状态进行定期检查,并根据订单的状态自动执行某些操作,比如关闭未支付的订单、自动确认收货等. 需求分析以及接口设计 需求分析 用户下单后可能存在的情况: …...

STM32 | ADC+RS485(第十天)
点击上方"蓝字"关注我们 01、ADC概述 ADC, Analog-to-Digital Converter的缩写,指模/数转换器或者模拟/数字转换器。是指将连续变量的模拟信号转换为离散的数字信号的器件。真实世界的模拟信号.例如温度、压力、声音或者图像等,需要转换成更容易储存、处理和发射的…...
python打包成能够在mac里面运行的程序
要将你的PyQt5应用程序打包成可以在macOS上运行的独立应用程序,可以使用工具如PyInstaller或py2app。下面是使用py2app的详细步骤,因为它是macOS上专用的打包工具,并且更好地支持PyQt5。 1. 安装py2app 首先,确保你的macOS系统上…...

基于FPGA的数字信号处理(20)--半减器和全减器
目录 1、前言 2、半减器 3、全减器 4、减法器 文章总目录点这里:《基于FPGA的数字信号处理》专栏的导航与说明 1、前言 既然有半加器和全加器,那自然也有半减器和全减器了。尽管在电路中减法的实现基本都是 补码 加法 的形式,但是正所谓…...
Python:单引号,双引号,三引号的区别
在Python中,单引号()、双引号(")和三引号( 或 """)都可以用来定义字符串,但它们之间有一些区别: 单引号()和双引号…...
电子电气架构 ---SOMEIP/SD初入门
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节…...
一些数学基础概念
一些数学基础概念 概率密度函数(PDF) 概率密度函数(Probability Density Function,简称 PDF)是描述连续随机变量的概率分布的一种函数。它用来表示随机变量在各个取值区间内的概率密度。 1. 定义 对于一个连续随机变量 ( X ),…...
责任有限公司的一般组织结构
责任有限公司(有限责任公司,LLC)的组织结构通常是为了确保公司运营的有效性和管理的透明度。以下是一般责任有限公司的组织结构及其主要组成部分: 1. 股东(Shareholders) 职责和角色 所有者:…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...

376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...