【知识】pytorch中的pinned memory和pageable memory
转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn]
如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~
目录
概念简介
pytorch用法
速度测试
反直觉情况
概念简介

默认情况下,主机 (CPU) 数据分配是可分页的。GPU 无法直接从可分页主机内存访问数据,因此当调用从可分页主机内存到设备内存的数据传输时,CUDA 驱动程序必须首先分配一个临时的页面锁定或“固定”主机数组,将主机数据复制到固定数组,然后将数据从固定阵列传输到设备内存。
如图所示,固定内存用作从设备到主机的传输暂存区域。通过直接在固定内存中分配主机阵列,我们可以避免在可分页主机阵列和固定主机阵列之间传输的成本。使用 cudaMallocHost() 或 cudaHostAlloc() 在 CUDA C/C++ 中分配固定主机内存,并使用 cudaFreeHost() 解除分配。固定内存分配可能会失败,因此应始终检查错误。
数据传输速率可能取决于主机系统的类型(主板、CPU 和芯片组)以及 GPU。通过运行BandwidthTest会产生以下结果。可见,固定传输的速度是可分页传输的两倍多。(我的测试发现,基本上能跑满PCIe的带宽。)
Device: NVS 4200M
Transfer size (MB): 16Pageable transfersHost to Device bandwidth (GB/s): 2.308439Device to Host bandwidth (GB/s): 2.316220Pinned transfersHost to Device bandwidth (GB/s): 5.774224Device to Host bandwidth (GB/s): 5.958834
不过,不应过度分配固定内存。这样做会降低整体系统性能,因为它会减少操作系统和其他程序可用的物理内存量。多少是太多是很难提前判断出来的,因此与所有优化一样,测试你的应用程序及其运行的系统以获得最佳性能参数。
用法示例
由于pinned memory后,可以使用DMA传输而不占用CPU,因此通常需要搭配non_blocking使用。
# tensor.pin_memory() 就行
pinned_tensor = torch.randn(data_size, dtype=torch.float32).pin_memory()device = torch.device("cuda")
pinned_tensor.to(device, non_blocking=True)
速度测试
import torch
import time
import torch.multiprocessing as mp# 数据大小
data_size = 10**7 # 例如,10M数据def test_pinned_memory(rank, normal_tensor, pinned_tensor, device):# 测试普通内存到GPU传输时间start_time = time.perf_counter()normal_tensor_gpu = normal_tensor.to(device, non_blocking=True)torch.cuda.synchronize() # 等待数据传输完成normal_memory_time = time.perf_counter() - start_timeprint(f"[进程 {rank}] 普通内存到GPU传输时间: {normal_memory_time:.6f} 秒")# 测试固定内存到GPU传输时间start_time = time.perf_counter()pinned_tensor_gpu = pinned_tensor.to(device, non_blocking=True)torch.cuda.synchronize() # 等待数据传输完成pinned_memory_time = time.perf_counter() - start_timeprint(f"[进程 {rank}] 固定内存到GPU传输时间: {pinned_memory_time:.6f} 秒")# 比较结果speedup = normal_memory_time / pinned_memory_timeprint(f"[进程 {rank}] 固定内存的传输速度是普通内存的 {speedup:.2f} 倍")if __name__ == '__main__':# 分配普通内存中的张量normal_tensor = torch.randn(data_size, dtype=torch.float32)# 分配固定内存中的张量pinned_tensor = torch.randn(data_size, dtype=torch.float32).pin_memory()# 目标设备device = torch.device("cuda")# 使用mp.spawn启动多进程测试mp.spawn(test_pinned_memory, args=(normal_tensor, pinned_tensor, device), nprocs=2, join=True)
输出:
[进程 0] 普通内存到GPU传输时间: 1.054590 秒
[进程 0] 固定内存到GPU传输时间: 0.012945 秒
[进程 0] 固定内存的传输速度是普通内存的 81.47 倍
[进程 1] 普通内存到GPU传输时间: 1.169124 秒
[进程 1] 固定内存到GPU传输时间: 0.013019 秒
[进程 1] 固定内存的传输速度是普通内存的 89.80 倍
可以看到速度还是非常快的。
反直觉情况
我再瞎试的过程中发现,如果将pinned memory放在一个class中,那么多进程时候,pinned memory的移动很慢。暂不清楚为什么。
示例代码(反例,仅供观看,请勿使用):
import torch
import torch.multiprocessing as mp
class PinnedMemoryManager:def __init__(self, data_size):self.data_size = data_sizeself.normal_tensor = Noneself.pinned_tensor = Nonedef allocate_normal_memory(self):# 分配普通内存self.normal_tensor = torch.randn(self.data_size, dtype=torch.float32)def allocate_pinned_memory(self):# 分配固定内存self.pinned_tensor = torch.randn(self.data_size, dtype=torch.float32).pin_memory()def transfer_to_device(self, device, use_pinned_memory=False):# 选择使用普通内存或固定内存tensor = self.pinned_tensor if use_pinned_memory else self.normal_tensorif tensor is None:raise ValueError("Tensor not allocated. Call allocate_memory first.")# 数据传输start_time = torch.cuda.Event(enable_timing=True)end_time = torch.cuda.Event(enable_timing=True)start_time.record()tensor_gpu = tensor.to(device, non_blocking=True)end_time.record()# 同步并计算传输时间torch.cuda.synchronize()transfer_time = start_time.elapsed_time(end_time) / 1000.0 # 转换为秒return tensor_gpu, transfer_timedef free_memory(self):# 释放内存del self.normal_tensordel self.pinned_tensorself.normal_tensor = Noneself.pinned_tensor = Nonedef test_pinned_memory(rank, manager, device):# 测试普通内存到GPU传输时间normal_gpu, normal_memory_time = manager.transfer_to_device(device, use_pinned_memory=False)print(f"[进程 {rank}] 普通内存到GPU传输时间: {normal_memory_time:.6f} 秒")# 测试固定内存到GPU传输时间pinned_gpu, pinned_memory_time = manager.transfer_to_device(device, use_pinned_memory=True)print(f"[进程 {rank}] 固定内存到GPU传输时间: {pinned_memory_time:.6f} 秒")# 比较结果speedup = normal_memory_time / pinned_memory_timeprint(f"[进程 {rank}] 固定内存的传输速度是普通内存的 {speedup:.2f} 倍")if __name__ == '__main__':# 数据大小data_size = 10**7 # 例如,10M数据# 初始化固定内存管理器manager = PinnedMemoryManager(data_size)manager.allocate_normal_memory()manager.allocate_pinned_memory()# 目标设备device = torch.device("cuda")# 使用mp.spawn启动多进程测试mp.spawn(test_pinned_memory, args=(manager, device), nprocs=2, join=True)# 释放内存manager.free_memory()
输出:
[进程 1] 普通内存到GPU传输时间: 0.013695 秒
[进程 1] 固定内存到GPU传输时间: 0.013505 秒
[进程 1] 固定内存的传输速度是普通内存的 1.01 倍
[进程 0] 普通内存到GPU传输时间: 0.013752 秒
[进程 0] 固定内存到GPU传输时间: 0.013593 秒
[进程 0] 固定内存的传输速度是普通内存的 1.01 倍
可以看到基本上没啥改进。
暂不清楚原因,只能先无脑避免这种用法了。
相关文章:
【知识】pytorch中的pinned memory和pageable memory
转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~ 目录 概念简介 pytorch用法 速度测试 反直觉情况 概念简介 默认情况下,主机 (CPU) 数据分配是可分页的。GPU 无…...
【系统架构设计】数据库系统(五)
数据库系统(五) 数据库模式与范式数据库设计备份与恢复分布式数据库系统数据仓库数据挖掘NoSQL大数据 数据库模式与范式 数据库设计 备份与恢复 分布式数据库系统 数据仓库 数据挖掘 对数据挖掘技术进行支持的三种基础技术已经发展成熟,…...
如何对人工智能系统进行测试|要点,方法及流程
当今社会,人工智能发展非常快。现在人工智能的发展已经渗透到了我们生活的方方面面,自动驾驶、或者我们手机里经常用到的一些应用都或多或少涉及到了一些人工智能的功能,比如说美图秀秀、新闻推荐、机器翻译以及个性化的购物推荐等等都涉及到…...
CVE-2023-37569~文件上传【春秋云境靶场渗透】
# 今天我们拿下CVE-2023-37569这个文件上传漏洞# 经过简单账号密码猜测 账号:admin 密码:password# 找到了文件上传的地方# 我们直接给它上传一句话木马并发现上传成功# 上传好木马后,右键上传的木马打开发现上传木马页面# 直接使用蚁剑进行连…...
MySQL简介 数据库管理与表管理
文章目录 1 MySQL的优势2 MySQL数据类型1 数字类型2 日期和时间类型3 字符串类型 3 数据库管理4 数据表管理参考 1 MySQL的优势 性能优化:通过优化存储引擎(InnoDB,MyISAM)和查询优化。解决大规模数据处理和查询优化开源…...
PHP 函数性能优化的技巧是什么?
本文由 ChatMoney团队出品 本文将详细介绍 PHP 函数性能优化的技巧。通过分析 PHP 函数的执行过程和性能瓶颈,提供一系列实用的优化方法,并结合代码示例,帮助读者提升 PHP 代码的执行效率。文章内容将涵盖变量作用域、递归算法、循环优化、内…...
小程序支付(前端)
前端只需要调用 wx.requestPayment(Object object) 文档 参考代码 const openId wx.getStorageSync(openId)payOrder({payId: this.data.resData.payId,openId}).then((res) > {console.log(2222, res);try {const data JSON.parse(res.res)console.log(22, data)const {…...
开发一个自己的VSCode插件
1、前言 对于一个前端开发者来说,开发工具,最常用的应该就是VSCode了,因为它免费,速度快,提供了丰富了插件等优点,使得越来越多的前端开发者都来使用它了,在开发的时候如果有丰富的插件提供支持…...
Milvus 向量数据库进阶系列丨构建 RAG 多租户/多用户系统 (上)
本系列文章介绍 在和社区小伙伴们交流的过程中,我们发现大家最关心的问题从来不是某个具体的功能如何使用,而是面对一个具体的实战场景时,如何选择合适的向量数据库解决方案或最优的功能组合。在 “Milvus 向量数据库进阶” 这个系列文章中&…...
前缀和(更新中)
目录 1.寻找数组的中心下标 2.除自身以外数组的乘积 3.和为k的子数组 4.可被k整除的子数组 5.连续数组 1.寻找数组的中心下标 . - 力扣(LeetCode) class Solution { public:int pivotIndex(vector<int>& nums) {int size nums.size();v…...
记录一次单例模式乱用带来的危害。
项目场景: 我们在接受到短信网关下发的回执之后,需要将回执内容也下发给我们的下游服务。为了防止下游响应超时,我们需要将超时的信息存放到Redis中然后进行补发操作。 问题描述 在使用Redis进行数据存储的时候,报NPE问题。 原因…...
外卖项目day14(day11)---数据统计
Apache ECharts 大家可以看我这篇文章: Apache ECharts-CSDN博客 营业额统计 产品原型 接口设计 新建admin/ReportController /*** 数据统计相关接口*/ RestController RequestMapping("/admin/report") Api(tags "数据统计相关接口") Slf…...
养猫科普!牙口不好的猫咪怎么选粮?好吃易消化主食罐推荐
我家的猫猫已经九岁了,已经是一位老奶奶了,她的牙口不太好。对于她来说,膨化猫粮过于硬,很难咀嚼,所以我为她准备了质地柔软的主食罐头。哪种主食罐头更适合牙口不好的猫咪呢?下面,我就来分享一…...
力扣刷题之3143.正方形中的最多点数
题干描述 给你一个二维数组 points 和一个字符串 s ,其中 points[i] 表示第 i 个点的坐标,s[i] 表示第 i 个点的 标签 。 如果一个正方形的中心在 (0, 0) ,所有边都平行于坐标轴,且正方形内 不 存在标签相同的两个点,…...
【更新2022】省级经济高质量发展指标体系测度 含代码 2000-2022
重磅更新!【章汕】制作“省级经济高质量发展指标体系测度 含代码”,市面上有这个版本的数据,但其内容非常不全面,个别指标有误,没有stata和代码,即使有代码小白也很容易报错;没有权重、宽面板等…...
缓冲流练习
练习1:拷贝文件 四种方式拷贝文件,并统计各自用时。 字节流的基本流:一次读写一个字节 字节流的基本流:一次读写一个字节数组 字节缓冲流:一次读写一个字节 字节缓冲流:一次读写一个字节数组 这里我只使用了…...
自己履行很多的话语,依旧按照这个方式进行生活
《明朝那些事儿》最后一段讲述了徐霞客的故事,作者当年明月通过徐霞客的生平表达了一种人生哲学。在书的结尾,当年明月写道:"成功只有一个——按照自己的方式,去度过人生",这句话被用作《明朝那些事儿》的结…...
交通预测数据文件梳理:METR-LA
文章目录 前言一、adj_METR-LA.pkl文件读取子文件1读取子文件2读取子文件3 二、METR-LA.h5文件 前言 最近做的实验比较多,对于交通预测数据的各种文件和文件中的数据格式理解愈加混乱,因此打算重新做一遍梳理来加深实验数据集的理解,本文章作…...
按钮类控件
目录 1.Push Button 代码示例: 带有图标的按钮 代码示例: 带有快捷键的按钮 代码示例: 按钮的重复触发 2.Radio Buttion 代码示例: 选择性别 代码示例: click, press, release, toggled 的区别 代码示例: 单选框分组 3.3 Check Box 代码示例: 获取复选按钮的取值 1.Pu…...
opencascade AIS_ViewController源码学习 视图控制、包含鼠标事件等
opencascade AIS_ViewController 前言 用于在GUI和渲染线程之间处理视图器事件的辅助结构。 该类实现了以下功能: 缓存存储用户输入状态(鼠标、触摸和键盘)。 将鼠标/多点触控输入映射到视图相机操作(平移、旋转、缩放࿰…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...
4. TypeScript 类型推断与类型组合
一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式,自动确定它们的类型。 这一特性减少了显式类型注解的需要,在保持类型安全的同时简化了代码。通过分析上下文和初始值,TypeSc…...
Python 高级应用10:在python 大型项目中 FastAPI 和 Django 的相互配合
无论是python,或者java 的大型项目中,都会涉及到 自身平台微服务之间的相互调用,以及和第三发平台的 接口对接,那在python 中是怎么实现的呢? 在 Python Web 开发中,FastAPI 和 Django 是两个重要但定位不…...
门静脉高压——表现
一、门静脉高压表现 00:01 1. 门静脉构成 00:13 组成结构:由肠系膜上静脉和脾静脉汇合构成,是肝脏血液供应的主要来源。淤血后果:门静脉淤血会同时导致脾静脉和肠系膜上静脉淤血,引发后续系列症状。 2. 脾大和脾功能亢进 00:46 …...
Java中栈的多种实现类详解
Java中栈的多种实现类详解:Stack、LinkedList与ArrayDeque全方位对比 前言一、Stack类——Java最早的栈实现1.1 Stack类简介1.2 常用方法1.3 优缺点分析 二、LinkedList类——灵活的双端链表2.1 LinkedList类简介2.2 常用方法2.3 优缺点分析 三、ArrayDeque类——高…...
Easy Excel
Easy Excel 一、依赖引入二、基本使用1. 定义实体类(导入/导出共用)2. 写 Excel3. 读 Excel 三、常用注解说明(完整列表)四、进阶:自定义转换器(Converter) 其它自定义转换器没生效 Easy Excel在…...
el-amap-bezier-curve运用及线弧度设置
文章目录 简介示例线弧度属性主要弧度相关属性其他相关样式属性完整示例链接简介 el-amap-bezier-curve 是 Vue-Amap 组件库中的一个组件,用于在 高德地图 上绘制贝塞尔曲线。 基本用法属性path定义曲线的路径,可以是多个弧线段的组合。stroke-weight线条的宽度。stroke…...
更新 Docker 容器中的某一个文件
🔄 如何更新 Docker 容器中的某一个文件 以下是几种在 Docker 中更新单个文件的常用方法,适用于不同场景。 ✅ 方法一:使用 docker cp 拷贝文件到容器中(最简单) 🧰 命令格式: docker cp <…...
浅谈未来汽车电子电气架构发展趋势中的通信部分
目录 一、引入 1.1市场占比演化 1.2未来发展趋势 二、纯电动汽车与传统汽车的区别 2.1 纯电车和燃油车的架构(干货) 2.2 新能源汽车的分类 ⚡ 1. 纯电动汽车(BEV) 🔋 2. 插电式混合动力(PHEV&#…...
