Logistic回归
Logistic回归模型:
适用于二分类或多分类问题,样本特征是数值型(否则需要转换为数值型)
策略:极大似然估计
算法:随机梯度 或 BFGS算法(改进的拟牛顿法)
线性回归表达式:
式子中;w为N个特征权重组成的向量,即
;b是第i个样本对应的偏置常数。
Sigmoid函数:
对数概率
Logistic 回归模型:
,
构造似然函数:
Logistic回归优化:梯度下降,分别对权重w,偏置b求导数:
综上,可归纳Logistic回归的过程:
实例:鸢尾花数据集划分:
class Logistic_Regression:def __init__(self):self.coef_ = Noneself.intercept_ = Noneself._theta = Nonedef _sigmoid(self,t):return 1./(1.+np.exp(-t)) def fit(self,X_train,y_train,eta = 0.01, n_iters =1e4):def J(theta,X_b,y):y_hat = self._sigmoid(X_b.dot(theta))try:return -np.sum(y*np.log(y_hat) +(1-y)*np.log(1-y_hat) )except:return float('inf')def dJ(theta,X_b,y):return X_b.T.dot(self._sigmoid(X_b.dot(theta))-y)def gradient_descent(initia_theta,X_b,y, eta,n_iters =1e4,epsilon =1e-8 ):theta = initia_thetacur_iter = 0while cur_iter < n_iters:gradient = dJ(theta,X_b, y)last_theta = thetatheta = theta - eta * gradientif (abs(J(theta,X_b, y)-J(last_theta,X_b, y)) < epsilon):breakcur_iter += 1return thetaX_b = np.hstack([np.ones(len(X_train)).reshape(-1,1),X_train])initia_theta = np.zeros(X_b.shape[1])self._theta = gradient_descent(initia_theta,X_b,y_train,eta,n_iters)self.intercept_ = self._theta[0]self.coef_ = self._theta[1:]return selfdef predict_proba(self,X_predict):X_b = np.hstack([np.ones(len(X_predict)).reshape(-1,1),X_predict])return self._sigmoid(X_b.dot(self._theta))def predict(self,X_predict):proba = self.predict_proba(X_predict)return np.array(proba >= 0.5,dtype = 'int')def score(self,X_test,y_test):y_predict = self.predict(X_test)return accuracy_score(y_test, y_predict)def __repr__(self):return "LogisticRegression()"
可视化划分:
from sklearn import datasets
iris = datasets.load_iris()
X = iris.data
y = iris.target
X = X[y<2,:2]
y = y[y<2]
plot_decision_boundary(log_reg,X_test)
plt.scatter(X_test[y_test==0,0],X_test[y_test==0,1])
plt.scatter(X_test[y_test==1,0],X_test[y_test==1,1])
plt.show()
总结
注意:虽然 Logistic 回归的名字叫作回归,但其实它是一种分类方法!!!
优点
- 逻辑斯蒂回归模型基于简单的线性函数,易于理解和实现。
- Logistic 回归模型对一般的分类问题都可使用。
- Logistic 回归模型不仅可以预测出样本类别,还可以得到预测为某类别的近似概率,这在许多需要利用概率辅助决策的任务中比较实用。
- Logistic 回归模型中使用的对数损失函数是任意阶可导的凸函数,有很好的数学性质,可避免局部最小值问题。
缺点
- Logis ic 回归模型本质上还是种线性模型,只能做线性分类,不适合处理非线性的情况,一般需要结合较多的人工特征处理使用。
- Logistic 回归对正负样本的分布比较敏感,所以要注意样本的平衡性,即y=1的样本数不能太少。
- 模型不能自动捕捉特征之间的交互作用,需要手动进行特征工程。
相关文章:

Logistic回归
Logistic回归模型: 适用于二分类或多分类问题,样本特征是数值型(否则需要转换为数值型) 策略:极大似然估计 算法:随机梯度 或 BFGS算法(改进的拟牛顿法) 线性回归表达式…...

Langchain-Chatchat+Xinference集成部署
Langchain-ChatchatXinference集成部署 安装环境: 系统:Anolis OS 8.9 python版本:Python 3.9.19 Langchain-Chatchat版本:0.3.1.3 Xinference版本:v0.13.3 模型选择(下载时需要科学上网)&#…...

江协科技51单片机学习- p33 PWM呼吸灯和直流驱动电机调速
🚀write in front🚀 🔎大家好,我是黄桃罐头,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流 🎁欢迎各位→点赞👍 收藏⭐️ 留言📝…...

使用Jetbrains.Rider反编译Unity的DLL文件看源码
直接将dll文件的打开方式用Rider打开即可,打开BattleSeqGenertor.dll文件的效果如下:...

【学习笔记】决策单调性优化DP
背景 GDCPC还在发力,清华出题组出的牛客还是 4 题。 这次没有min25筛,不然我能5题(bushi 除了一道用 prufer 序列的恶心 DP 外,还有一道DP题是一个状态难想,并且还需要决策单调性优化的DP,被认为是偏简单…...

【每日一题】【二分图最大匹配】【经典板子题】有大家喜欢的零食吗 河南萌新联赛2024第(一)场:河南农业大学 C题 C++
河南萌新联赛2024第(一)场:河南农业大学 C题 有大家喜欢的零食吗 题目描述 在某幼儿园中共有 n n n个小朋友,该幼儿园的老师为这 n n n 个小朋友准备了 n n n 份不一样的零食大礼包。每个小朋友只能选择一个,但老…...

【python】OpenCV—Image Colorization
文章目录 1、CIELAB 色彩空间2、作色问题定义3、Caffe 模型4、代码实现——Image5、代码实现——Video6、参考 1、CIELAB 色彩空间 Lab颜色空间,也称为Lab色彩空间或CIELAB色彩空间,是一种基于人类视觉感知特性的颜色模型。它是在1931年国际照明委员会&…...

vue 学习笔记
模板语法 1. 插值语法 用于解析标签体内容 { { 表达式 } } ,可以直接读取到 data 中的所有属性 2. 指令语法 解析标签(标签属性, 标签内容, 绑定事件) v-bind : href " url " 或 : href &…...
武汉流星汇聚:‘中国制造’闪耀欧洲站,体育赛事成亚马逊增长点
随着2024年的欧洲体育赛事激情四溢,欧洲杯与奥运会的双重盛会不仅点燃了全球体育迷的热情,更为亚马逊欧洲站带来了前所未有的发展机遇。在这场体育盛宴的推动下,欧洲站正展现出其无限的发展潜力和广阔的市场前景,为中国卖家乃至全…...

RPA是什么?探讨RPA发展的最新趋势 | RPA研究
随着人工智能和自动化技术的飞速发展,机器人流程自动化(Robotic Process Automation,简称RPA)正逐渐成为企业数字化转型的关键工具。RPA通过模拟人类用户的操作行为,自动化执行重复性高、规则性强的任务,从…...
sqlalchemy时间范围查询
1、sqlalchemy时间范围查询 在 SQLAlchemy 中,进行时间范围查询可以通过比较日期或时间字段来实现。假设你有一个模型 Event,它包含一个 timestamp 字段,你想查询在某个时间范围内的所有事件。以下是如何使用 SQLAlchemy 来实现这个查询的示例。 首先,确保你有 SQLAlchem…...

电脑不小心删除的文件怎么恢复?教你文件恢复的绝招
在日常使用电脑的过程中,我们有时会因为误操作或不小心而删除了重要的文件。面对这种情况,很多人可能会感到焦虑和无助。但其实,通过一些专业的方法和工具,我们有可能恢复这些被误删的文件。本文将介绍两种常见的恢复方法…...
stm32:使用和学习--硬件和程序
一硬件 1. GPIO 1.FT, TT功能 ft:five tolerate tt:three tolerate 1. FT(Five-Volt Tolerant)引脚 FT 引脚能够容忍高于 VDD 的输入电压(例如 5V)。这些引脚通常不具有连接到 VDD 的保护二极管&…...

ARM知识点二
一、指令 指令的生成过程 指令执行过程示例 if (a 0) {x 0; } else {x x 3; } //翻译为 cmp r0,#0 MOVEQ R1,#0 ADDGT R1,R1,#3指令获取:从Flash中读取 CMP R0, #0,控制器开始执行。 指令解码:解码器解析 CMP 指令,ALU比较R…...
C# ?的使用
栏目总目录 可空类型标记符(?) 说明: 可空类型标记符?用于指示某个值类型(如int、float等)可以为null。这是C# 2.0引入的一个特性,用于处理数据库查询、JSON解析等场景中可能出现的空值。 示例代码&am…...

【unity小技巧】unity性能优化以及如何进行性能测试
文章目录 前言GPU性能优化打包素材 CPU性能优化代码执行优化 性能测试Vector2.Distance 和 sqrMagnitude哪个好?动画切换优化shader属性优化 URP渲染器资产优化对象池优化删除没必要的空函数图片、音乐音效、贴图等素材压缩ScriptableObject优化参数参考完结 前言 …...
算法参考改进点/知识点
1、clip文章中改进点 图像编码器image encoder: 将全局平均池化层替换为注意力池化机制。注意力池化机制:通过一个单层的“transformer式”多头QKV注意力,其中查询query是基于图像的全局平均池表示。改进VIT(Vision Transformer…...

electron 配置、打包 -报错解决
目录 一、配置途中遇到的问题: 二、 make 配置好后开始打包 三、Electron-builder 打包报错 一、配置途中遇到的问题: 1. 安装 yarn add electron -D 一直卡在这里失败 一直卡可以使用下面这个,然后再重新装依赖 1. 采用新的镜像地址 npm …...
基于STM32设计的智能鱼缸(华为云IOT)(200)
文章目录 一、前言1.1 项目介绍【1】项目功能介绍【2】设计实现的功能【3】项目硬件模块组成1.2 设计思路【1】整体设计思路【2】ESP8266工作模式配置【3】自动换水原理1.3 项目开发背景【1】选题的意义【2】可行性分析【3】参考文献1.4 开发工具的选择【1】设备端开发【2】上位…...

Django与数据库
目录 创建项目app 路由子表 数据库 创建数据库 什么是ORM 定义数据库表 Django Admin 管理数据 过滤条件 代码直接生成HTML 使用模板 前后端分离架构 对资源的增删改查处理 列出客户 添加客户 临时取消 CSRF 校验 修改客户信息 删除客户 Django中ORM的处理 数据模…...

使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...

MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

C++ 设计模式 《小明的奶茶加料风波》
👨🎓 模式名称:装饰器模式(Decorator Pattern) 👦 小明最近上线了校园奶茶配送功能,业务火爆,大家都在加料: 有的同学要加波霸 🟤,有的要加椰果…...

Unity UGUI Button事件流程
场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...
MySQL 主从同步异常处理
阅读原文:https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主,遇到的这个错误: Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一,通常表示ÿ…...