当前位置: 首页 > news >正文

吴恩达机器学习-C1W3L2-逻辑回归之S型函数

可选实验:逻辑回归

在这个不评分的实验中,你会

  • 探索sigmoid函数(也称为logistic函数)
  • 探索逻辑回归;哪个用到了s型函数
import numpy as np
%matplotlib widget
import matplotlib.pyplot as plt
from plt_one_addpt_onclick import plt_one_addpt_onclick
from lab_utils_common import draw_vthresh
plt.style.use('./deeplearning.mplstyle')

Sigmoid或Logistic函数

正如讲座视频中所讨论的,对于分类任务,我们可以从使用线性回归模型 f w , b ( x ( i ) ) = w ⋅ x ( i ) + b f_{\mathbf{w},b}(\mathbf{x}^{(i)}) = \mathbf{w} \cdot \mathbf{x}^{(i)} + b fwb(x(i))=wx(i)+b开始,来预测给定 x x x y y y
-然而,我们希望我们的分类模型的预测在0和1之间,因为我们的输出变量 y y y是0或1。
-这可以通过使用“sigmoid函数”来完成,该函数将所有输入值映射到0到1之间的值。
我们来实现s型函数,自己看看。
在这里插入图片描述

Sigmoid函数的公式

s型函数的公式如下
g ( z ) = 1 1 + e − z g(z) = \frac{1}{1+e^{-z}} g(z)=1+ez1
在逻辑回归的情况下,z (sigmoid函数的输入)是线性回归模型的输出。

  • 单个示例时,“ z z z”为标量。
  • 在多个示例的情况下, z z z可能是由 m m m值组成的向量,每个示例一个。
  • sigmoid函数的实现应该涵盖这两种可能的输入格式。让我们在Python中实现它。

NumPy有一个名为exp()的函数,它提供了一种方便的方法来计算输入数组 z 中所有元素的指数( e z e^{z} ez)。
它还可以使用单个数字作为输入,如下所示。

# Input is an array. 
input_array = np.array([1,2,3])
exp_array = np.exp(input_array)print("Input to exp:", input_array)
print("Output of exp:", exp_array)# Input is a single number
input_val = 1  
exp_val = np.exp(input_val)print("Input to exp:", input_val)
print("Output of exp:", exp_val)

sigmoid函数是用python实现的,如下面的单元格所示。

def sigmoid(z):"""Compute the sigmoid of zArgs:z (ndarray): A scalar, numpy array of any size.Returns:g (ndarray): sigmoid(z), with the same shape as z"""g = 1/(1+np.exp(-z))return g

让我们看看对于不同的z值这个函数的输出是什么

# Generate an array of evenly spaced values between -10 and 10
z_tmp = np.arange(-10,11)# Use the function implemented above to get the sigmoid values
y = sigmoid(z_tmp)# Code for pretty printing the two arrays next to each other
np.set_printoptions(precision=3) 
print("Input (z), Output (sigmoid(z))")
print(np.c_[z_tmp, y])

左列的值为z,右列的值为s型(z)。如您所见,sigmoid的输入值范围从-10到10,输出值范围从0到1。
现在,让我们尝试使用matplotlib库绘制这个函数。

# Plot z vs sigmoid(z)
fig,ax = plt.subplots(1,1,figsize=(5,3))
ax.plot(z_tmp,y,c='b')
ax.set_title('Sigmoid function')
ax.set_ylabel('sigmoid(z)')
ax.set_xlabel('z')
# 在 z=0 处绘制垂直阈值线
draw_vthresh(ax,0)
plt.show()

如你所见,当z趋于负值时,s型函数趋于0,当z趋于正值时,s型函数趋于1。

逻辑回归

逻辑回归模型将s型曲线应用于我们熟悉的线性回归模型,如下图所示:
f w , b ( x ( i ) ) = g ( w ⋅ x ( i ) + b ) (2) f_{\mathbf{w},b}(\mathbf{x}^{(i)}) = g(\mathbf{w} \cdot \mathbf{x}^{(i)} + b ) \tag{2} fw,b(x(i))=g(wx(i)+b)(2)
g ( z ) = 1 1 + e − z g(z) = \frac{1}{1+e^{-z}} g(z)=1+ez1

在这里插入图片描述
让我们将逻辑回归应用到肿瘤分类的分类数据示例中。
首先,加载示例和参数的初始值。

x_train = np.array([0., 1, 2, 3, 4, 5])
y_train = np.array([0,  0, 0, 1, 1, 1])w_in = np.zeros((1))
b_in = 0

尝试以下步骤:

  • 点击“运行逻辑回归”以找到给定训练数据的最佳逻辑回归模型
    • 注意所得模型与数据拟合得很好。
    • 注意,橙色线是’ z z z’或 w ⋅ x ( i ) + b \mathbf{w} \cdot \mathbf{x}^{(i)} + b wx(i)+b。它与线性回归模型中的直线不匹配。
      通过应用“阈值”进一步改进这些结果。
  • 勾选“切换0.5阈值”上的框,以显示如果应用阈值的预测。
    • 这些预测看起来不错。预测与数据相符
    • 现在,在大肿瘤大小范围内(接近10)添加进一步的数据点,并重新运行线性回归。
    • 与线性回归模型不同,该模型持续做出正确的预测
plt.close('all') 
addpt = plt_one_addpt_onclick( x_train,y_train, w_in, b_in, logistic=True)

恭喜

你已经探索了s型函数在逻辑回归中的应用。

相关文章:

吴恩达机器学习-C1W3L2-逻辑回归之S型函数

可选实验:逻辑回归 在这个不评分的实验中,你会 探索sigmoid函数(也称为logistic函数)探索逻辑回归;哪个用到了s型函数 import numpy as np %matplotlib widget import matplotlib.pyplot as plt from plt_one_addpt_onclick import plt_one_addpt_onclick from l…...

P-one新增火焰图-为性能测试开启新视野

随着软件业务流程的日益复杂,传统的性能测试方法已经难以满足对性能问题精准定位的需求。测试人员需要一种更加直观、全面的方式来分析软件在运行过程中的性能表现,以便快速准确地找到性能瓶颈并进行优化。因此,我们在性能测试平台P-One中加入…...

CTF-web基础 TCP/UDP协议

传输层协议由TCP/UDP协议组成,来控制信息的传输,二者有什么区别呢,TCP比较靠谱,但是UDP速度比较快一点。 TCP协议 Transmission Control protocol, 三次握手:先给服务器传输询问要发消息,然后…...

sql常用语法总结

SQL(Structured Query Language,结构化查询语言)是一种用于管理和操作关系数据库的标准编程语言。本文用来记录一些接触到的sql语句,随着学习不断进行更新: 选择数据 - SELECT 语句用于从数据库表中检索数据。 SELECT column1, column2 FROM table_name;插入数据 - INSERT…...

实验八 题目描述 从键盘上输入任意一个整数(正负数皆可),判断该整数的绝对值是否为回文数。

实验八 题目描述 从键盘上输入任意一个整数(正负数皆可),判断该整数的绝对值是否为回文数。[提示:取数的绝对值,然后使用用循环语句从该绝对值的末位开始至最高位,重新构造一个数,…...

IsaacLab | Workflow 中 rsl_rl 的 play.py 脚本精读

如是我闻: 在用IsaacLab 做强化学习实验时,回顾已训练好的模型需要调用workflow中的play.py脚本,以下是对rsl_rl的play.py脚本的逐行精读。 1. 版权声明和文件描述 # Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All ri…...

PYTHON专题-(8)我错了该怎么整?

什么是异常处理? 异常处理是一种机制,用于在程序执行期间发生错误或异常时,对发生的异常进行捕获、处理和恢复,以确保程序能够继续执行或正确地终止。异常处理可以包括捕获异常、处理异常,以及执行相应的操作来处理异常…...

【自然资源】设施农业用地的学习梳理

【自然资源】设施农业用地的学习梳理 什么是设施农业用地? 2019年12月17日,自然资源部 、农业农村部印发的《关于设施农业用地管理有关问题的通知》规定:设施农业用地包括农业生产中直接用于作物种植和畜禽水产养殖的设施用地。其中&#x…...

【秋招笔试】24-07-27-OPPO-秋招笔试题(后端卷)

🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 💻 ACM金牌团队🏅️ | 多次AK大厂笔试 | 编程一对一辅导 ✨ 本系列打算持续跟新 秋招笔试题 👏 感谢大家的订阅➕ 和 喜欢💗 ✨ 笔试合集传送们 -> 🧷春秋招笔试合集 💡 01.二进制反转游戏 问题描述 K小姐…...

JS 补充内容

一、dir 打印对象 二、获取 html 中的元素 常用的两种方式 其他获取元素的方法 三、 innerText 四、innerHTML 五、修改元素的值 六、鼠标放上去,显示图片的提示文字 img . title 七、获取 N ~ M 之间的随机整数 八、修改属性样式 1. style 2. className 将后面 …...

H5+JS 4096小游戏

主要实现 1.使用WASD或方向按钮控制游戏 2.最高值4096,玩到4096视为胜利 3.随机生成2、4、8方块 4.移动方块 5.合并方块 JS代码干了什么 初始化游戏界面:创建游戏板和控制按钮。 定义游戏相关变量:如棋盘大小、棋盘状态、得分等。 初始化棋…...

常见中间件漏洞(二、WebLogin合集)

目录 二、WebLogic Weblogic介绍 2.1 后台弱口令GetShell 漏洞描述 影响范围 环境搭建 漏洞复现 2.2 CVE-2017-3506 漏洞描述 影响版本 环境搭建 漏洞复现 2.3 CVE-2019-2725 漏洞描述 影响版本 环境搭建 漏洞复现 2.4 CVE-2018-2628 漏洞描述 漏洞影响 环…...

LeetCode LCR147.最小栈

LeetCode LCR147.最小栈 思路🤔: 建立两个栈,一个栈正常入栈出栈,一个栈只用于出入最小数,当push值小于minst栈顶才入栈,当pop值等于minst栈顶才出栈。 代码🔎: class MinStack { pu…...

目标检测的算法有哪些

目标检测是计算机视觉领域的一个重要任务,它涉及识别图像或视频中的对象,并确定它们的位置和类别。随着深度学习的发展,出现了许多高效且准确的目标检测算法。以下是一些主要的目标检测算法: 两阶段检测器(Region-bas…...

HDU多校-交通管控

Problem - 7498 (hdu.edu.cn) 直接dfs显然不行,达到了2^500,那么我们可以考虑枚举所有红绿灯的状态,总共有三种状态,k的范围小于等于10,因此所有状态数为3^10不会超,所以通过三进制状压dp即可完成&#xf…...

【C++】string类

🚀个人主页:奋斗的小羊 🚀所属专栏:C 很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~ 目录 前言💥1、标准库中的string类💥1.1string类的常用接口💥string类对象常见…...

Python中各类常用内置转换函数

Python中各类常用内置转换函数 函数功能说明int(x)将 x 转换为整数类型float(x)将 x 转换为浮点数类型str(x)将 x 转换为字符串repr(x)将 x 转换为表达式字符串eval(str)计算在字符串中的有效Python表达式,并返回一个对象list(s)将序列 s 转换为一个列表tuple(s)将…...

LangChain与JWT:构建安全认证的桥梁

LangChain与JWT:构建安全认证的桥梁 在现代Web应用和微服务架构中,安全认证是保护数据和资源访问的关键。JSON Web Tokens(JWT)作为一种广泛使用的开放标准,为安全传输提供了一种简洁而自包含的方式。LangChain&#…...

ai写作软件哪个好用?怎么帮自己找到好用的ai写作软件?

ai写作软件的出现是随着ai技术的迅猛发展下的产物,它主要应用于内容创作领域,可以是文章内容创作、视频内容创作、绘图创作等等,不同的ai写作软件可能应用的领域不同,但也有的ai写作软件应用的范围却是比较广。今天小编主要来跟大…...

关于gunicorn+flask+docker模型的高并发部署

这是一个结合了现代Web技术的高效部署方案,旨在提高Web应用的并发处理能力和可扩展性。以下是对该模型高并发部署的详细解析: 一、模型概述 GunicornFlaskDocker模型结合了Flask的轻量级和灵活性、Gunicorn的高并发处理能力以及Docker的容器化优势&…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

Rust 开发环境搭建

环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行: rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu ​ 2、Hello World fn main() { println…...

MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释

以Module Federation 插件详为例,Webpack.config.js它可能的配置和含义如下: 前言 Module Federation 的Webpack.config.js核心配置包括: name filename(定义应用标识) remotes(引用远程模块&#xff0…...

前端开发者常用网站

Can I use网站:一个查询网页技术兼容性的网站 一个查询网页技术兼容性的网站Can I use:Can I use... Support tables for HTML5, CSS3, etc (查询浏览器对HTML5的支持情况) 权威网站:MDN JavaScript权威网站:JavaScript | MDN...

针对药品仓库的效期管理问题,如何利用WMS系统“破局”

案例: 某医药分销企业,主要经营各类药品的批发与零售。由于药品的特殊性,效期管理至关重要,但该企业一直面临效期问题的困扰。在未使用WMS系统之前,其药品入库、存储、出库等环节的效期管理主要依赖人工记录与检查。库…...

shell脚本质数判断

shell脚本质数判断 shell输入一个正整数,判断是否为质数(素数)shell求1-100内的质数shell求给定数组输出其中的质数 shell输入一个正整数,判断是否为质数(素数) 思路: 1:1 2:1 2 3:1 2 3 4:1 2 3 4 5:1 2 3 4 5-------> 3:2 4:2 3 5:2 3…...

6.计算机网络核心知识点精要手册

计算机网络核心知识点精要手册 1.协议基础篇 网络协议三要素 语法:数据与控制信息的结构或格式,如同语言中的语法规则语义:控制信息的具体含义和响应方式,规定通信双方"说什么"同步:事件执行的顺序与时序…...