当前位置: 首页 > news >正文

机器学习常见模型

1、线性模型

线性模型是机器学习最基本的算法类型,它试图学到一个通过多个特征(属性)计算的线性组合来预测的函数,简单的线性回归形式如y=ax+b,其中,x代表特征,而y代表结果,一旦a和b的值能到确定,模型即得以确定,此时若输入新的x就可以推算新的y。如果变量仅有一个,则称为一元线性回归,若存在超过一个的自变量,即将x、y、a、b均扩展为向量,则称为多元线性回归。

使用线性回归能够预测数据趋势​,还可以处理分类问题。除线性回归外,经典的线性模型中还包括逻辑回归,逻辑回归可以视为广义的线性回归,其表现形式与线性回归相似,但使用逻辑函数将ax+b映射为一个隐状态,再根据隐状态的大小计算模型取值,其损失函数是最小化负的似然函数。

线性模型的缺点是难以预测复杂的行为,并容易出现过拟合。

2、 决策树

决策树是另一类常见的机器学习方法,其模型是一个树型结构(见图8-3)​,也可看作有向无环图,其中树的节点表示某个特征,而分叉路径代表不同的判断条件,数据将从根节点行进到叶节点,依据特征进行判断,最终在叶节点得到预测结果。常见的决策树算法有ID3、C4.5和CART等,其区别主要在于依据什么指标来指导节点的分裂。例如,ID3以增熵原理来确定分裂的方式,C4.5在ID3基础上定义了信息增益率,避免分割太细导致的过拟合,而CART使用的则是类似熵的基尼指数。

与线性模型类似,决策树也包括分类树和回归树,其优势是易于理解、实现,也易于评测,但缺点是训练最优的决策树可以被证明为完全NP问题,因此只能使用启发式算法,并且容易过拟合,通过对特征的选择、对数据的选择和对模型的剪枝能够缓解。此外,决策树的平衡也十分脆弱,较小的数据变化训练出的树结构可能大为不同,这时可以通过随机森林等方法解决。

3、随机森林

随机森林(Random Forest)是集成算法的一种,其主要概念是将多种训练出的模型集成在一起,将一些较弱的算法通过集成提升成为较强的算法,泛化能力通常比单一算法显著地优越。随机森林本身是一个包含多个决策树的分类器,其输出类别由个别树输出的类别决定,其多样性来自数据样本和特征的双重扰动。

与随机森林代表的Bagging方法(均匀取样)有所区别,Boosting方法意图根据错误率进行取样,对分类错误的样本赋予较大权重,可以看作集成算法不同的思路。此外,Bagging方法的训练集可以相互独立,接受弱分类器并行,而Boosting方法的训练集选择与前一轮的训练结果相关,可以视作串行,其结果往往在精度上更好,但难以并行训练。

Boosting方法的代表算法是GBDT(Gradient Boost DecisionTree,梯度提升决策树)​,这里GBDT学习的实际是之前所有树得到结论的残差。GBDT可以处理离散和连续的数据,几乎可以用于所有的回归问题和分类问题,常见的Xgboost库可以被看作遵循Boosting思想决策树的优化工程实现,除CART树外,它还支持线性分类器作为基分类器,增加了损失函数中的正则项以防止过拟合,在每一轮学习后会进行缩减等。

4、贝叶斯

贝叶斯分类器是另一种常见的构造分类器的方法,追求分类错误最小或平均风险最小,其原理是通过某个对象的先验概率,假设每个特征与其他特征都不相关,利用贝叶斯公式算出其属于某一  类的概率,选择具有最大可能性的类别。

5、支持向量机

在不对问题做任何假定的情况下,并不存在一种“最优”的分类方法,如果说在特征数量有限的情况下,GBDT和Xgboost应当是首选尝试方案的话,支持向量机(即Support Vector Machine,SVM)则是另一项利器,适于解决样本数量少、特征众多的非线性问题。由于期望区分的集合在有限维空间内可能线性不可分,SVM算法通过选择合适的核函数定义映射(从原始特征映射到高维特征空间)​,在高维或无限维空间构造一个超平面,令其中分类边界距离训练数据点越远越好,以此进行分类和回归分析​。

6、K近邻算法 

与上述的算法不太一样,K近邻算法是一延迟分类算法,即其几乎没有训练过程,相反主要的计算发生在预测过程。K近邻算法的原理是在给定数据中,基于距离找出训练集中与其距离最近的K个样本,基于其信息使用投票法或均值计算进行预测,距离可用于计算的权重。由于训练数据的密度并非总能保证在一定距离范围内找到近邻样本,可以采取降维的方法,即将高维的特征空间转换为低维,常见的方法包括主成分分析、线性判别分析、拉普拉斯映射等,而降维亦可通过度量学习的方法习得。

不论是线性模型,还是SVM,K近邻,又或是决策树、随机森林、GBDT,均需要通过输入数据和输出数据的对应关系生成函数,属于监督学习的一种。

7、聚类

聚类是无监督学习的典型算法类型之一,聚类算法意图将数据集中的样本划分为若干集合,然而不同集合的概念并非预先设定,相反,属于同一集合的样本其特征取决于样本之间的相似性,也即距离长短,集合的特征可由使用者命名。常用的聚类算法有K-Means算法、高斯混合聚类等,其既可以用于直接解决分类问题,也可作为其他任务的前置任务。

机器学习依赖数据和特征,选择合适的特征将会对学习过程有重要影响,尤其是帮助降低对高维度数据的处理难度,特征选择的思路主要包括在训练前对数据集进行特征选择,将模型性能直接作为特征子集评价标准,融合特征选择与学习过程等几类。

8、概率图模型

概率图模型是用图来表示变量概率依赖关系的方法,一幅概率图由节点和边构成,节点表示随机变量,边表示变量之间的概率关系。它们又可以被分为两类​:一类是有向图模型,即节点之间的边包含箭头,指示随机变量之间的因果关系;另一类是无向图模型,节点之间不存在方向,常用于表示随机变量之间的约束。常见的概率图模型包括马尔科夫场、隐马尔科夫模型、条件随机场、学习推断、近似推断、话题模型等。图模型的主要好处是利于快速直观地建立描述复杂实际问题的模型,从数据中发掘隐含的信息,并通过推理得出结论。

 

9、强化学习

强化学习是机器学习中另一较大的分支方向,不同于前文所处理的分类、回归、聚类等问题,强调基于反馈采取行动,以取得最 大化的预期回报,即建立一个主体通过行为获得的奖励或惩罚,修正对行动后果的预期,得到可以产生最大回报的行为模型​。

与一般的监督学习的模式不同,强化学习的反馈常常需要延迟获得,也即在多个步骤的行动之后才能获取到奖惩结果,其重要之处在于探索未曾尝试的行动和从已执行的行动中获取信息。可以想见,其适应的数据也将是序列化、交互性、带有反馈信息的。考虑行动的模型可以马尔科夫决策过程(Markov DecisionProcess,MDP)的描述,即系统的下个状态不仅与当前状态相关,亦与当前采取的行动相关,需要定义初始状态、动作集合、状态转移概率和回报函数。由于立即回报函数难以说明策略的好坏,还需要定义值函数表明某一策略的长期影响,而求取MDP的最优策略,也即求取在任意初始条件下,能够最大化值函数的策略,对应的方法有动态规划法、蒙特卡罗法、时间差分法(结合动态规划和蒙特卡罗法的方法,如Sarsa或Q-Learning算法)等。 

相关文章:

机器学习常见模型

1、线性模型 线性模型是机器学习最基本的算法类型,它试图学到一个通过多个特征(属性)计算的线性组合来预测的函数,简单的线性回归形式如yaxb,其中,x代表特征,而y代表结果,一旦a和b的…...

【python案例】基于Python 爬虫的房地产数据可视化分析设计与实现

引言 研究背景与意义 房地产行业在我国属于支柱性产业,在我国社会经济发展中一直扮演着重要角色。房价问题,尤其是大中城市的房价问题,一直是政府、大众和众多研究人员关注的热点。如何科学地预测房价是房价问题的研究方向之一。随着互联网…...

如何在Python中诊断和解决内存溢出问题

python的内存溢出即程序在申请内存后未能正确释放,导致随着时间推移占用的内存越来越多,以下是一些可能导致内存溢出的原因: 1、循环引用:当对象之间形成循环引用,并且这些对象定义了__del__方法时,Python…...

什么是爬虫软件?这两个爬虫神器你必须要试试

爬虫软件概述 爬虫,又称为网络爬虫或网页爬虫,是一种自动浏览互联网的程序,它按照一定的算法顺序访问网页,并从中提取有用信息。爬虫软件通常由以下几部分组成: 用户代理(User-Agent)&#xf…...

记录|MVS和VM软件使用记录

目录 前言一、常用属性二、触发模式选择三、操作注意点四、录像、抓拍功能五、VM软件六、VM软件界面介绍七、VM软件运行间隔八、VM软件图像源九、VM软件相机管理十、获取图像十一、方案存储十一、相机拍摄彩图转换颜色转换快速匹配特征模板:运行参数 十二、位置修正…...

算法通关:014_1:用栈实现队列

文章目录 题目总结代码运行结果 题目 用栈实现队列 leetcode :232 总结 时间复杂度 平均下来每个方式是O(1) 代码 class MyQueue {public Stack<Integer> in;public Stack<Integer> out;//初始化public MyQueue() {in new Stack<>();out new Stack<…...

【C#】Random

在 C# 中&#xff0c;Random 类的实例通常用于生成随机数。在方法内部或外部创建 Random 实例主要影响的是实例的生命周期和性能。 在方法外部创建 Random 实例 生命周期&#xff1a;如果在类的成员变量中创建 Random 实例&#xff0c;那么这个实例的生命周期将与类的实例相同…...

MongoDB简介及其在Java中的应用

什么是MongoDB&#xff1f; MongoDB是一个基于分布式文件存储的数据库&#xff0c;由C语言编写。它旨在为Web应用提供可扩展的高性能数据存储解决方案。MongoDB结合了关系数据库和非关系数据库&#xff08;NoSQL&#xff09;的特点&#xff0c;是功能最丰富、最像关系数据库的…...

JSON-LD上下文将属性映射到RDF IRIs示例

为了更清晰地说明JSON-LD上下文是如何将属性映射到RDF IRIs&#xff0c;我们可以基于提供的上下文规范&#xff0c;举一个完整的JSON-LD数据实例&#xff0c;并展示它是如何转换为RDF三元组的。 示例上下文 {"context": {"foaf": "http://xmlns.com…...

Spring的监听机制详解

Spring的监听机制详解 讲在前面 对Spring框架&#xff0c;大家都已不陌生&#xff0c;它给我们提供了很多功能&#xff0c;包括IoC、AOP、事务管理等。其中&#xff0c;Spring的事件监听机制是一项非常重要的功能&#xff0c;它允许开发人员定义和处理自定义事件&#xff0c;并…...

Cache结构

Cache cache的一般设计 超标量处理器每周期需要从Cache中同时读取多条指令&#xff0c;同时每周期也可能有多条load/store指令会访问Cache&#xff0c;因此需要多端口的Cache L1 Cache&#xff1a;最靠近处理器&#xff0c;是流水线的一部分&#xff0c;包含两个物理存在 指…...

国产版Sora复现——智谱AI开源CogVideoX-2b 本地部署复现实践教程

目录 一、CogVideoX简介二、CogVideoX部署实践流程2.1、创建丹摩实例2.2、配置环境和依赖2.3、上传模型与配置文件2.4、开始运行 最后 一、CogVideoX简介 智谱AI在8月6日宣布了一个令人兴奋的消息&#xff1a;他们将开源视频生成模型CogVideoX。目前&#xff0c;其提示词上限为…...

怎么读取FRM、MYD、MYI数据文件

一、介绍frm、MYD、MYI文件 在MySQL中&#xff0c;使用MyISAM存储引擎时&#xff0c;数据库表会被分割成几个不同的文件文件描述功能扩展名FRM 文件表结构定义文件存储表的结构信息&#xff0c;字段、索引等.FRMMYD 文件数据文件包含表的实际数据.MYD&#xff08;MYData&#x…...

Leetcode3226. 使两个整数相等的位更改次数

Every day a Leetcode 题目来源&#xff1a;3226. 使两个整数相等的位更改次数 解法1&#xff1a;位运算 从集合的角度理解&#xff0c;k 必须是 n 的子集。如果不是&#xff0c;返回 −1。怎么用位运算判断&#xff0c;见上面的文章链接。 如果 k 是 n 的子集&#xff0c;…...

Linux笔记-3()

目录 一、Linuⅸ实操篇-定时任务调度 二、Linuⅸ实操篇-Linuⅸ磁盘分区、挂载 三、Linux实操篇-网络配置 一、Linuⅸ实操篇-定时任务调度 1 crond任务调度---crontab进行定时任务的设置1.1 概述任务调度&#xff1a;是指系统在某个时间执行的特定的命令或程序。任务调度分类…...

Apache漏洞复现CVE-2021-41773

Apache HTTP Server 路径穿越漏洞 漏洞简介 该漏洞是由于Apache HTTP Server 2.4.49版本存在目录穿越漏洞,在路径穿越目录 <Directory/>Require all granted</Directory>允许被访问的的情况下&#xff08;默认开启&#xff09;&#xff0c;攻击者可利用该路径穿越…...

GIT如何将远程指定分支的指定提交拉回到本地分支

一、当前我的代码在这个提交&#xff0c;但可以看到远程仓库上面还有两次新的提交 二、现在我想让我本次的代码更新到最上面这个最新的提交 三、输入git fetch命令获取远程分支的最新提交信息。 四、输入 git log origin/<remote_branch_name>查看并找到想要更新的指定提…...

鸿蒙图形开发【3D引擎接口示例】

介绍 本实例主要介绍3D引擎提供的接口功能。提供了ohos.graphics.scene中接口的功能演示。 3D引擎渲染的画面会被显示在Component3D这一控件中。点击按钮触发不同的功能&#xff0c;用户可以观察渲染画面的改变。 效果预览 使用说明 在主界面&#xff0c;可以点击按钮进入不…...

C#实现数据采集系统-系统优化服务封装

系统优化-服务封装 现在我们调用modbustcp和mqtt都直接在Program,所有加载和功能都混合在一起,比较难以维护 类似asp.net core项目的Program.cs代码如下,构建服务配置和启动 要实现的效果,Main方法中就是一个服务启动,只需要几行代码 分析代码 这里分成两部分,一…...

数据结构与算法--栈、队列篇

一、计算机领域的地位 在计算机科学的广袤领域中&#xff0c;数据结构犹如一座精巧的大厦&#xff0c;为信息的存储和处理提供了坚实的框架。而在众多的数据结构中&#xff0c;栈和队列宛如两颗璀璨的明珠&#xff0c;各自闪耀着独特的光芒。 栈和队列虽然看似简单&…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

WebRTC从入门到实践 - 零基础教程

WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC&#xff1f; WebRTC&#xff08;Web Real-Time Communication&#xff09;是一个支持网页浏览器进行实时语音…...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...