09.FreeRTOS时间片调度与任务相关函数
文章目录
- 09. FreeRTOS时间片调度与任务相关函数
- 1. FreeRTOS时间片调度
- 2. 任务状态查询API函数
- 3. 任务时间统计API函数
09. FreeRTOS时间片调度与任务相关函数
1. FreeRTOS时间片调度
时间片调度简介:
时间片调度实验流程:
核心代码:
开始任务函数:
void start_task(void* pvParamter)
{taskENTER_CRITICAL(); // 进入临界区 xTaskCreate((TaskFunction_t ) task1, //指向任务函数的指针(char * ) "task1", //任务名称(configSTACK_DEPTH_TYPE) TASK1_TASK_STACK_SIZE, //任务堆栈大小,字节为单位(void * ) NULL, //传递给任务函数的参数(UBaseType_t ) TASK1_TASK_PRIO, //任务优先级(TaskHandle_t * ) &task1_task_handler //任务句柄:任务控制块);xTaskCreate((TaskFunction_t ) task2, //指向任务函数的指针(char * ) "task2", //任务名称(configSTACK_DEPTH_TYPE) TASK2_TASK_STACK_SIZE, //任务堆栈大小,字节为单位(void * ) NULL, //传递给任务函数的参数(UBaseType_t ) TASK2_TASK_PRIO, //任务优先级(TaskHandle_t * ) &task2_task_handler //任务句柄:任务控制块); vTaskDelete(NULL);taskEXIT_CRITICAL(); // 退出临界区
}
任务1函数:
void task1(void* pvParamter)
{uint32_t task1_num = 0;while(1){taskENTER_CRITICAL();printf("task1正在运行!!!%d\r\n",++task1_num);taskEXIT_CRITICAL(); delay_ms(10); }
}
任务2函数:
void task2(void* pvParamter)
{uint32_t task2_num = 0;while(1){taskENTER_CRITICAL();printf("task2正在运行!!!%d\r\n",++task2_num);taskEXIT_CRITICAL(); delay_ms(10); }
}
实验结果:
2. 任务状态查询API函数
函数 | 描述 |
---|---|
uxTaskPriorityGet() | 获取任务优先级 |
vTaskPrioritySet() | 设置任务优先级 |
uxTaskGetNumberOfTasks() | 获取系统中任务的数量 |
uxTaskGetSystemState() | 获取所有任务状态信息 |
vTaskGetInfo() | 获取指定单个的任务信息 |
xTaskGetCurrentTaskHandle() | 获取当前任务的任务句柄 |
xTaskGetHandle() | 根据任务名获取该任务的任务句柄 |
uxTaskGetStackHighWaterMark() | 获取任务的任务栈历史剩余最小值 |
eTaskGetState() | 获取任务状态 |
vTaskList() | 以“表格”形式获取所有任务的信息 |
vTaskGetRunTimeStats() | 获取任务的运行时间 |
-
uxTaskPriorityGet()函数
函数解释:
代码实现:
//1.查询任务的优先级 UBaseType_t priority_num = 0; priority_num = uxTaskPriorityGet(task1_task_handler); printf("1.任务1的任务优先级为:%ld\r\n\n", priority_num);
实验结果:
-
vTaskPrioritySet()函数
函数解释:
代码实现:
//2.设置任务的优先级 vTaskPrioritySet(task2_task_handler,30); priority_num = uxTaskPriorityGet(task2_task_handler); printf("2.任务2的任务优先级为:%ld\r\n\n", priority_num);
实验结果:
-
uxTaskGetNumberOfTasks() 函数
函数解释:
代码实现:
//3.获取任务的数量 UBaseType_t task_num = 0; task_num = uxTaskGetNumberOfTasks(); printf("3.当前的任务数量为:%ld\r\n\n", task_num);
实验结果:
-
uxTaskGetSystemState()函数
函数解释:
代码实现:
//4.获取所有任务的状态信息 UBaseType_t task_num2 = 0; TaskStatus_t * status_array = 0; uint8_t i = 0; status_array = mymalloc(SRAMIN,sizeof(TaskStatus_t *) * task_num); task_num2 = uxTaskGetSystemState( status_array,task_num, NULL);for(i = 0;i < task_num2; i++) {printf("4.%d 任务名:%s \r\n", i+1, status_array[i].pcTaskName);printf("4.%d 当前任务优先级:%ld \r\n", i+1, status_array[i].uxCurrentPriority);printf("4.%d 任务编号:%ld \r\n", i+1, status_array[i].xTaskNumber); } printf("\n");
实验结果:
-
vTaskGetInfo()函数
函数解释:
代码实现:
//5.获取单个任务的状态信息 TaskStatus_t * status_array2 = 0; status_array2 = mymalloc(SRAMIN,sizeof(TaskStatus_t *)); vTaskGetInfo(task2_task_handler, status_array2, pdTRUE, eInvalid); printf("5.任务名:%s\r\n", status_array2->pcTaskName); printf("5.当前任务优先级:%ld\r\n", status_array2->uxCurrentPriority); printf("5.任务编号:%ld\r\n", status_array2->xTaskNumber); printf("5.任务状态:%d\r\n\n", status_array2->eCurrentState);
实验结果:
-
xTaskGetCurrentTaskHandle()函数
函数解释:
代码实现:
实验结果:
-
xTaskGetHandle()函数
函数解释:
代码实现:
//6.获取任务句柄 TaskHandle_t task_handle = 0; task_handle = xTaskGetHandle("task1"); printf("6.任务句柄:%#x\r\n", (int)task_handle); printf("6.task的任务句柄:%#x\r\n\n", (int)task1_task_handler);
实验结果:
-
uxTaskGetStackHighWaterMark()函数
函数解释:
代码实现:
//7.获取指定任务的任务栈历史最小剩余堆栈 UBaseType_t task_stack_min = 0; task_stack_min = uxTaskGetStackHighWaterMark(task2_task_handler); printf("7.task2历史剩余最小堆栈为:%ld\r\n\n", task_stack_min);
实验结果:
-
eTaskGetState()函数
函数解释:
代码实现:
//8.查询任务的运行状态 eTaskState task_status = 0; task_status = eTaskGetState(task2_task_handler); printf("8.当前task2的运行状态为:%d\r\n\n", task_status);
实验结果:
-
vTaskList()函数
函数解释:
代码实现:
//9.以表格形式获取系统中任务的信息 char task_buff[300]; vTaskList(task_buff); printf("9.\r\n"); printf("%s\r\n\n", task_buff);
实验结果:
3. 任务时间统计API函数
- vTaskGetRunTimeStats()函数
函数解释:
代码实现:
任务中实现:
while(1)
{key = key_scan(0);if(key == KEY0){vTaskGetRunTimeStats(task_buff);printf("%s\r\n", task_buff);}vTaskDelay(10);
}
FreeRTOSConfig.h
文件:
/* 运行时间和任务状态统计相关定义 */
#define configGENERATE_RUN_TIME_STATS 1 // 1: 使能任务运行时间统计功能, 默认: 0
#if configGENERATE_RUN_TIME_STATS
#include "./BSP/TIMER/btim.h"
#define portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() ConfigureTimeForRunTimeStats()
extern uint32_t FreeRTOSRunTimeTicks;
#define portGET_RUN_TIME_COUNTER_VALUE() FreeRTOSRunTimeTicks
#endif
#define configUSE_TRACE_FACILITY 1 // 1: 使能可视化跟踪调试, 默认: 0
#define configUSE_STATS_FORMATTING_FUNCTIONS 1 // 1: configUSE_TRACE_FACILITY为1时,会编译vTaskList()和vTaskGetRunTimeStats()函数, 默认: 0
btim.c
文件:
//定义变量FreeRTOSRunTimeTicks
uint32_t FreeRTOSRunTimeTicks;/*时基定时器初始化*/
void ConfigureTimeForRunTimeStats()
{btim_tim6_int_init(10-1, 720-1); //10us中断一次FreeRTOSRunTimeTicks = 0;
}/*定时器6中断初始化*/
void btim_tim6_int_init(uint16_t psc, uint16_t per)
{g_tim6_handle.Instance = TIM6;g_tim6_handle.Init.Prescaler = psc;g_tim6_handle.Init.Period = per;HAL_TIM_Base_Init(&g_tim6_handle);//使能更新中断,并启动计数器HAL_TIM_Base_Start_IT(&g_tim6_handle);
}/*定时器6中断服务函数*/
void TIM6_IRQHandler()
{//处理基本定时器中断事件HAL_TIM_IRQHandler(&g_tim6_handle);
}/*定时器溢出中断回调函数*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{if (htim->Instance == TIM6){FreeRTOSRunTimeTicks++;}}
定时器程序运行流程:
实验结果:
相关文章:

09.FreeRTOS时间片调度与任务相关函数
文章目录 09. FreeRTOS时间片调度与任务相关函数1. FreeRTOS时间片调度2. 任务状态查询API函数3. 任务时间统计API函数 09. FreeRTOS时间片调度与任务相关函数 1. FreeRTOS时间片调度 时间片调度简介: 时间片调度实验流程: 核心代码: 开…...

git分支介绍
git branch 查看当前分支情况 可以看见当前只有一个分支叫main,也就是默认分支,可以理解为树的主干,git早期版本中默认分支叫master 命令行创建一个新分支 git branch [分支名]在创建之后,如果需要切换到新分支需要git switc…...

vm虚拟机下安装CentOS7系统
VMware16安装CentOS7 1.启动之前安装的VM 具体VMware安装过程 2.配置Linux(centos7)的镜像文件 选择安装镜像文件 4.开启虚拟机 开始读秒安装 选择安装过程中使用的语言,这里选择英文、键盘选择美式键盘。点击Continue 首先设置时间…...

python-报数(赛氪OJ)
[题目描述] 有 n 人围成一圈,顺序排号。 从第 1 个人开始报数(从 1 到 3 报数),凡是报到 3 的人退出圈子,问最后留下的是原来的第几号的那位。输入格式: 初始人数 n 。输出格式: 最后一人的初始…...

灵办AI:智能插件,办公与编程的得力助手
目录 引言一、灵办AI:智能化的办公伙伴二、编程能力:🔥代码阅读,学习助手🔥1、代码解读2、代码续写3、代码优化 三、插件端对话功能:智能交互,流畅体验四、翻译功能:一键翻译&#x…...

食家巷小程序:传统面点与平凉特产的美味盛宴
在美食的世界里,总有一些角落等待着我们去探索,而食家巷小程序就是这样一个为您开启美食宝藏的钥匙。 一、传统面点,传承千年的美味 食家巷小程序为您呈现了种类丰富的传统面点,每一款都蕴含着深厚的历史和文化底蕴。 平凉锅盔&…...

矢量文件坐标转换:2000坐标系转换为wgs84坐标系,具体代码实现
最近在处理矢量样本的时候,遇到一些shp文件的坐标系为2000坐标,需要统一地把非WGS84坐标系的矢量转换为WGS84坐标系。 本文记录一下如何进行2000坐标系转化为wgs84坐标系的过程。 在处理矢量数据转换的过程中,有几个关键步骤确保了数据的有效…...

MySQL-InnoDB引擎
目录 逻辑存储结构 架构 概述 内存结构 Buffer Pool(缓冲池) Change Buffer(更改缓冲区) Adaptive Hash Index(自适应hash索引) Log Buffer(日志缓冲区) 磁盘结构 System T…...

【Material-UI】复杂按钮 (Complex Button) 自定义详解
文章目录 一、ButtonBase 组件简介二、实例讲解:创建复杂的图片按钮1. 样式定义2. 核心组件构建3. 交互效果 三、高级自定义技巧1. 响应式设计2. 动态内容与动画 四、总结 在现代 Web 应用中,按钮不仅仅是一个点击交互元素,它们也承载着传递信…...
IT服务质量管理攻略(至简)
质量管理、风险管理和信息安全管理是IT服务监督管理的重要内容,三者之间相对独立。IT服务质量管理是通过制订质量方针、质量目标和质量计划,实施质量控制、质量保证和质量改进活动,确保IT服务满足服务级别协议的要求,最终获得用户…...

MySQL事务隔离级别、InnoDB使用MVCC+各种锁实现了RC和RR事务隔离级别、具体案例
事务隔离级别 脏读:一个事务读取到另一个未提交事务的更改。不可重复读:一个事务在两次读取同一数据时,发现数据被另一个已提交事务修改了。幻读:一个事务在读取过程中,因其他事务的插入而导致返回的行数不一致&#…...

你的Java项目还在等待吗?快来学会线程池,解放你的性能!
文章目录 你的Java项目还在等待吗?快来学会线程池,解放你的性能!1 什么是线程池?为什么需要它?2 线程池的参数有哪些?3 不同类型的线程池有哪些配置? 你的Java项目还在等待吗?快来学…...

深入解析:Amazon Bedrock 上 Claude 3 Haiku 的微调测试报告
前言 2024年7月10日,Anthropic Claude 3 Haiku 的微调功能在 Amazon Bedrock 上开放预览。本篇文章将分享 Claude 3 Haiku 的微调使用步骤及微调后模型的评估结果。 LLM 细调的优势 通过细调,LLM可以获得特定领域的知识或新知识。这样,与RA…...
2023年庐阳区青少年信息学科普日真题- 马拉松(marathon)
题目描述 环湖马拉松全程 L 公里,已经安排了 N 个补给点,位置已经确定。由于预算增加,现在可以增设 K 个补给点。如何安排新增的补给点使得相邻补给点间最大距离最小。相邻补给点间距离也包括起点与第一个补给点之间的距离和最后一个补给点与…...
Python笔记:socket.gaierror: [Errno -3] Temporary failure in name resolution
【Python】成功解决socket.gaierror: [Errno -3] Temporary failure in name resolution 在Python开发中,使用网络编程时,特别是处理socket连接时,遇到socket.gaierror: [Errno -3] Temporary failure in name resolution这个错误是一个相对…...

HexView 刷写文件脚本处理工具-基本功能介绍(三)-导出S19/HEX
菜单 导出(Export) 此项目将一系列不同的选项组合在一起,用于将内部数据存储为不同的文件格式。每种导出都可以包含一些选项,以调整输出信息。 导出为S-Record格式(Export as S-Record) Motorola S-Record格式导出数据。 记录类型将根据最高地址信息的长度自动选择。…...

代码随想录算法训练营第四天(二)|面试题 02.07. 链表相交 142.环形链表II
面试题 02.07. 链表相交 题目: 给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点,返回 null 。 图示两个链表在节点 c1 开始相交: 题目数据 保证 整个链式结构中不存在环…...
学习记录第二十一天
目录操作是指在计算机文件系统中对目录(也称为文件夹)进行的各种管理操作。目录是组织和存储文件的一种逻辑结构,它帮助用户和系统管理大量文件,使得文件查找和组织更加高效有序。目录操作主要包括以下几种: 1.创建目…...

江协科技51单片机学习- p31 LCD1602液晶屏驱动
🚀write in front🚀 🔎大家好,我是黄桃罐头,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流 🎁欢迎各位→点赞👍 收藏⭐️ 留言📝…...
Android SurfaceFlinger——渲染完成帧显示(四十八)
帧渲染完成后下一步就是将帧缓冲区(framebuffer)的内容发送到显示设备进行显示,也是 SurfaceFlinger 处理渲染合成的最后一步。 1.更新输出设备的色彩配置文件2.更新与合成相关的状态3.计划合成帧图层4.写入合成状态5.设置颜色矩阵6.开始帧7.准备帧数据以进行显示(异步方式)…...

龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...

Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...