Git 和 GitHub 超入门指南(四)
Git基本命令
以下是一些基本的Git命令:
git add
:将文件添加到Git索引中git commit
:将索引中的文件提交到Git仓库中git status
:查看工作目录和索引的状态git log
:查看提交历史记录
Git高级命令
以下是一些高级的Git命令:
git reset
:回滚到某次提交git revert
:放弃某次提交git rebase
:变基
Github发布release版本
如果你想在GitHub上发布一个新版本,可以按照以下步骤操作:
- 在你的仓库页面上点击"Releases"选项卡。
- 点击"Draft a new release"按钮。
- 在弹出的窗口中填写新发布的版本号、标签、标题和描述等信息。
- 在描述中可以包含关于新版本的详细信息,例如修复的bug、新功能等。
- 上传你的软件包或文件。
- 点击"Publish release"按钮,完成发布。
- 其他用户可以通过下载或克隆你的代码库来获取新版本。
需要注意的是,创建Release需要有写入仓库的权限。如果你是仓库的管理员或拥有写入权限,就可以创建Release。如果没有写入权限,需要向仓库的管理员申请。
命令 | 作用 |
---|---|
Reset(重置) | 将分支顶端移至一个之前的提交。这个命令不要求提交消息。 |
Rebase(变基) | 允许你改变分支历史记录中提交的存放方式。通常用于将多个提交压缩成一个提交。 |
Revert(还原) | 还原共享分支上一个特定提交中做出的变更。需要push。 |
git reset 回滚到某次提交
git reset [<mode>] [<commit>]
参数 | 作用 |
---|---|
–soft | 头部重置为,会留下所有更改的文件“要提交的更改”。 |
–mixed | 重置索引但不重置工作树(即保留更改的文件但未标记提交)并报告尚未更新的内容。(默认) |
–hard | 重置索引和工作树。后对工作树中跟踪文件的任何更改都将被丢弃。 |
–merge | 重置索引并更新工作树中与和HEAD之间不同的文件,但保留索引和工作树之间不同的文件 |
–keep | 重置索引条目并更新工作树中在和HEAD之间不同的文件。 |
git revert 放弃某次提交
git revert 前后的提交仍会保留在 git log 中,而此次撤销会做为一次新的提交。
git rebase
- 编辑以前的提交消息
- 将多个提交合并为一个
- 删除或恢复不再需要的提交
- 重新设置另一个分支和当前分支状态之间的所有提交
git rebase --interactive other_branch_name
- 对当前分支中的最后几个提交进行rebase
git rebase -i HEAD~数字 # HEAD~数字 表示最近的几个commit
-
变基时有六个命令:
- pick
pick只是意味着包括提交。重新安排 pick 命令的顺序会更改提交的顺序。
如果选择不包括提交,则应删除整行。
- reword
重新设置 commit 的机会。提交所做的任何更改均不受影响。
- edit
进行更多提交,然后再继续进行变基。比如在两个提交之间插入更多提交。
- squash
可以将两个或多个提交合并为一个提交。提交被压缩到其上方的提交中。
- fixup
这类似于squash,但提交仅合并到其上方的提交中,并且舍弃消息。
- exec
可以对提交运行任意的Shell命令。
问题 | 解决方案 |
---|---|
回滚本地工作区未暂存的改动 | git checkout – |
回滚已暂存的改动,但未被提交 | git reset --hard |
回滚commit所做的改动,生成新的commit,log不影响 | git revert |
回滚已经提交的文件改动 | git rebase -i |
相关文章:
Git 和 GitHub 超入门指南(四)
Git基本命令 以下是一些基本的Git命令: git add:将文件添加到Git索引中git commit:将索引中的文件提交到Git仓库中git status:查看工作目录和索引的状态git log:查看提交历史记录 Git高级命令 以下是一些高级的Git…...
Java 响应式编程 Reactor 框架
文章目录 Java 响应式编程 Reactor 框架FluxMono其它的关键对象Java 响应式编程 Reactor 框架 Reactor框架的核心理念是基于响应式编程的异步流处理。这意味着应用程序可以通过异步事件流来处理请求,而不是通过传统的同步请求-响应模型。在响应式编程中, 应用程序可以处理多个…...

Hazel引擎学习(十一)
我自己维护引擎的github地址在这里,里面加了不少注释,有需要的可以看看 参考视频链接在这里 很高兴的是,引擎的开发终于慢慢开始往深了走了,前几章的引擎UI搭建着实是有点折磨人,根据课程,接下来的引擎开发…...
深度学习(22):如何判断训练过程中深度学习模型损失值不再下降
2023年3月22日,与 chatGPT 的沟通如何判断训练过程中深度学习模型损失值不再下降在深度学习中,判断模型是否收敛是非常重要的,这可以通过监控模型损失值来实现。一般来说,当训练模型的损失值不再下降,我们就可以认为模…...

一个比较全面的C#公共帮助类
上次跟大家推荐过2个C#开发工具箱:《推荐一个不到2MB的C#开发工具箱,集成了上千个常用操作类》、《推荐一个.Net常用代码集合,助你高效完成业务》。 今天再给大家推荐一个,这几个部分代码功能有重合的部分,大家可以根…...

人脸识别经典网络-MTCNN(含Python源码实现)
人脸检测-mtcnn 本文参加新星计划人工智能赛道:https://bbs.csdn.net/topics/613989052 文章目录人脸检测-mtcnn1. 人脸检测1.1 人脸检测概述1.2 人脸检测的难点1.3 人脸检测的应用场景2. mtcnn2.1 mtcnn概述2.2 mtcnn的网络结构2.3 图像金字塔2.4 P-Net2.5 R-Net2…...

OpenCV入门(十八)快速学会OpenCV 17 直线检测
OpenCV入门(十八)快速学会OpenCV 17 直线检测1.霍夫直线变换概述2.霍夫变换原理3.操作实例3.1 HoughLines函数3.2 HoughLinesP函数作者:Xiou 1.霍夫直线变换概述 霍夫变换是一种在图像中寻找直线、圆形以及其他简单形状的方法。霍夫变换采用…...

nginx快速入门.跟学B站nginx一小时精讲课程笔记
nginx快速入门.跟学B站nginx一小时精讲课程笔记nginx简介及环境准备nginx简介环境准备一、nginx 安装1.使用yum安装2.常用命令3.使用systemctl启动、停止、重新加载4.配置文件5.配置文件结构二、配置静态web1.静态网页配置2.listen监听3.server_name4.location三、HTTP反向代理…...

内存泄漏定位工具之 valgrind
内存泄漏检测工具 文章目录内存泄漏检测工具一、valgrind介绍1. memcheck2. cachegrind3. helgrind二、源码下载三、命令操作1.memcheck 工具四、虚拟机下使用1. x86编译2. 正常程序测试3. 申请内存不释放测试4. 内存越界的测试5. 读写已经释放的内存五、ARM平台使用1.交叉编译…...

Django(一)安装
好久没更新了 学习的内容太多了有点杂 一时不知道从何说起 !!! 对于Django我也不是很了解 在网上搜了个词条就是以下显示 我目前的了解也仅限于此 希望在接下来的学习过程中 有更多的学习体会可以和大家分享 一涉及到在对应python环境 下载东西时思维就会很混乱 这里再把之前…...

11从零开始学Java之如何正确地定义变量?
作者:孙玉昌,昵称【一一哥】,另外【壹壹哥】也是我哦CSDN博客专家、万粉博主、阿里云专家博主、掘金优质作者前言在之前的文章中,壹哥给大家讲解了Java的第一个案例HelloWorld,并详细给大家介绍了Java的标识符…...

51单片机之喝水提醒器
定时器定时器介绍晶振晶体震荡器,又称数字电路的“心脏”,是各种电子产品里面必不可少的频率元器件。数字电路的所有工作都离不开时钟,晶振的好坏、晶振电路设计的好坏,会影响到整个系统的稳定性。时钟周期时钟周期也称为振荡周期…...

扒一扒抖音是如何做线程优化的
背景 最近在对一些大厂App进行研究学习,在对某音App进行研究时,发现其在线程方面做了一些优化工作,并且其解决的问题也是之前我在做线上卡顿优化时遇到的,因此对其具体实现方案做了深入分析。本文是对其相关源码的研究加上个人理…...

149.网络安全渗透测试—[Cobalt Strike系列]—[重定器/代理服务器/流量走向分析]
我认为,无论是学习安全还是从事安全的人多多少少都会有些许的情怀和使命感!!! 文章目录一、Cobalt Strike 重定器1、Cobalt Strike 重定器简介2、重定器用到的端口转发工具二、cobalt strike重定器实验1、实验背景2、实验过程3、流…...
Qt调用Chrome浏览器
一、前言 最近有个小项目需要跳转网页,之前有了解过,但是没有在项目中使用过Qt网页嵌入; 结合自己之前的博客,有如下两种技术可以实现我的需求: 1、Qt–网页嵌入 2、Qt使用QAxWidget调用Windows组件 但是在实际开…...

JVM虚拟机垃圾回收机制
JVM虚拟机垃圾回收机制垃圾回收机制判断是否存活算法引用计数法可达性分析法最终判定垃圾回收算法分代收集机制空间分配担保垃圾回收机制 判断是否存活算法 java语言和我们之前学的c/c不同,c/c可以手动进行内存释放,那样随时随地就可以释放不必要的内存…...

菜鸟刷题Day3
⭐作者:别动我的饭 ⭐专栏:菜鸟刷题 ⭐标语:悟已往之不谏,知来者之可追 一.字符串压缩:面试题 01.06. 字符串压缩 - 力扣(LeetCode) 描述 字符串压缩。利用字符重复出现的次数,编…...
南京邮电大学数据库第三次课后作业
1.单选(2分) 下列关于模式的术语中,(C)不是指数据库三级模式结构中的外模式 (A)子模式 (B)用户模式 (C)存储模式 (D)用户视图 2单选题(2分) 数据库的三级模式结构中,描述数据全局逻辑…...

【vue2】使用vue常见的业务流程与实现思路
🥳博 主:初映CY的前说(前端领域) 🌞个人信条:想要变成得到,中间还有做到! 🤘本文核心:vue的业务处理思路。前台数据渲染与后台的增删改查操作 【前言】当大家会点开这一篇文章…...

Linux操作系统ARM体系结构处理器机制原理与实现
ARM 的概念ARM(Advanced RISC Machine),既可以认为是一个公司的名字,也可以认为是对一类微处理器的通称,还可以认为是一种技术的名字。ARM 公司并不生产芯片也不销售芯片,它只出售芯片技术授权。其合作公司针对不同需求搭配各类硬…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...

ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...

uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...

GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...

算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...