当前位置: 首页 > news >正文

【绘图】比Matplotlib更强大:ProPlot

✅作者简介:在读博士,伪程序媛,人工智能领域学习者,深耕机器学习,交叉学科实践者,周更前沿文章解读,提供科研小工具,分享科研经验,欢迎交流!
📌个人主页: https://blog.csdn.net/allein_STR?spm=1011.2559.3001.5343
💯特色专栏:深度学习和WRF,提供人工智能方方面面小姿势,从基础到进阶,教程全面。
📞联系博主:博文留言+主页底部联系方式+WeChat code: Allein_STR
📙本文内容:介绍ProPlot9大亮点+python代码

ProPlot是Matplotlib面向对象绘图方法(object-oriented interface)的高级封装,整合了cartopy/basemap地图库、xarray和pandas,可弥补Matplotlib的部分缺陷,ProPlot让Matplotlib爱好者拥有更加smoother plotting experience。

  1. 代码更简洁,图形更好看

将Matplotlib一行代码设置一个参数的繁琐行为直接通过format方法一次搞定,比如下图,

Proplot代码

import proplot as ppltfig, axs = pplt.subplots(ncols=2)
axs.format(color='gray', linewidth=1) #format设置所有子图属性
axs[0].bar([10, 50, 80], [0.2, 0.5, 1])
axs[0].format(xlim=(0, 100), #format设置子图1属性xticks=10,xtickminor=True,xlabel='foo',ylabel='bar')

一个完整的使用案例:

import proplot as pplt
import numpy as npfig, axs = pplt.subplots(ncols=2, nrows=2, refwidth=2, share=False)
state = np.random.RandomState(51423)
N = 60
x = np.linspace(1, 10, N)
y = (state.rand(N, 5) - 0.5).cumsum(axis=0)
axs[0].plot(x, y, linewidth=1.5)# 图表诸多属性可在format中设置
axs.format(suptitle='Format command demo',abc='A.',abcloc='ul',title='Main',ltitle='Left',rtitle='Right',  # different titlesultitle='Title 1',urtitle='Title 2',lltitle='Title 3',lrtitle='Title 4',toplabels=('Column 1', 'Column 2'),leftlabels=('Row 1', 'Row 2'),xlabel='xaxis',ylabel='yaxis',xscale='log',xlim=(1, 10),xticks=1,ylim=(-3, 3),yticks=pplt.arange(-3, 3),yticklabels=('a', 'bb', 'c', 'dd', 'e', 'ff', 'g'),ytickloc='both',yticklabelloc='both',xtickdir='inout',xtickminor=False,ygridminor=True,
)
  1. 更友好的类构造函数

将Matplotlib中类名书写不友好的类进行封装,可通过简洁的关键字参数调用。例如,mpl_toolkits.basemap.Basemap()、matplotlib.ticker.LogFormatterExponent()、ax.xaxis.set_major_locator(MultipleLocator(1.000))等等,封装后,

  1. 图形大小、子图间距自适应

proplot通过refwidthrefheightrefaspect、refheight、proplot.gridspec.GridSpec等控制图形大小和子图间距,替代Matplotlib自带的tightlayout,避免图形重叠、标签不完全等问题

案例:

proplot控制图形大小:

import proplot as pplt
import numpy as npstate = np.random.RandomState(51423)
colors = np.tile(state.rand(8, 12, 1), (1, 1, 3))fig, axs = pplt.subplots(ncols=3, nrows=2, refwidth=1.7) #refwidth的使用
fig.format(suptitle='Auto figure dimensions for grid of images')
for ax in axs:ax.imshow(colors)# 结合上文第2部分看,使用proj='robin'关键字参数调用cartopy projections'
fig, axs = pplt.subplots(ncols=2, nrows=3, proj='robin') 
axs.format(land=True, landcolor='k')
fig.format(suptitle='Auto figure dimensions for grid of cartopy projections')

proplot如何控制子图间距?

import proplot as ppltfig, axs = pplt.subplots(ncols=4, nrows=3, refwidth=1.1, span=False,bottom='5em', right='5em',  wspace=(0, 0, None), hspace=(0, None),  
) # proplot新的子图间距控制算法
axs.format(grid=False,xlocator=1, ylocator=1, tickdir='inout',xlim=(-1.5, 1.5), ylim=(-1.5, 1.5),suptitle='Tight layout with user overrides',toplabels=('Column 1', 'Column 2', 'Column 3', 'Column 4'),leftlabels=('Row 1', 'Row 2', 'Row 3'),
)
axs[0, :].format(xtickloc='top')
axs[2, :].format(xtickloc='both')
axs[:, 1].format(ytickloc='neither')
axs[:, 2].format(ytickloc='right')
axs[:, 3].format(ytickloc='both')
axs[-1, :].format(xlabel='xlabel', title='Title\nTitle\nTitle')
axs[:, 0].format(ylabel='ylabel')

4.多子图个性化设置

  • 子图灵活设置坐标轴标签:sharex, sharey, spanx, spany, alignxaligny参数控制,效果见下图(相同颜色比较来看)

  • 子图灵活添加编号

import proplot as pplt
import numpy as np
N = 20
state = np.random.RandomState(51423)
data = N + (state.rand(N, N) - 0.55).cumsum(axis=0).cumsum(axis=1)cycle = pplt.Cycle('greys', left=0.2, N=5)
fig, axs = pplt.subplots(ncols=2, nrows=2, figwidth=5, share=False)
axs[0].plot(data[:, :5], linewidth=2, linestyle='--', cycle=cycle)
axs[1].scatter(data[:, :5], marker='x', cycle=cycle)
axs[2].pcolormesh(data, cmap='greys')
m = axs[3].contourf(data, cmap='greys')
axs.format(abc='a.', titleloc='l', title='Title',xlabel='xlabel', ylabel='ylabel', suptitle='Quick plotting demo'
) #abc='a.'为各子图添加编号
fig.colorbar(m, loc='b', label='label')
  • 子图灵活设置Panels

  • 子图各自外观灵活自定义

import proplot as pplt
import numpy as np
state = np.random.RandomState(51423)# Selected subplots in a simple grid
fig, axs = pplt.subplots(ncols=4, nrows=4, refwidth=1.2, span=True)
axs.format(xlabel='xlabel', ylabel='ylabel', suptitle='Simple SubplotGrid')
axs.format(grid=False, xlim=(0, 50), ylim=(-4, 4))# 使用axs[:, 0].format自定义某个子图外观
axs[:, 0].format(facecolor='blush', edgecolor='gray7', linewidth=1)  # eauivalent
axs[:, 0].format(fc='blush', ec='gray7', lw=1)
axs[0, :].format(fc='sky blue', ec='gray7', lw=1)
axs[0].format(ec='black', fc='gray5', lw=1.4)
axs[1:, 1:].format(fc='gray1')
for ax in axs[1:, 1:]:ax.plot((state.rand(50, 5) - 0.5).cumsum(axis=0), cycle='Grays', lw=2)# 使用axs[1, 1:].format自定义某个子图外观
fig = pplt.figure(refwidth=1, refnum=5, span=False)
axs = fig.subplots([[1, 1, 2], [3, 4, 2], [3, 4, 5]], hratios=[2.2, 1, 1])
axs.format(xlabel='xlabel', ylabel='ylabel', suptitle='Complex SubplotGrid')
axs[0].format(ec='black', fc='gray1', lw=1.4)
axs[1, 1:].format(fc='blush')
axs[1, :1].format(fc='sky blue')
axs[-1, -1].format(fc='gray4', grid=False)
axs[0].plot((state.rand(50, 10) - 0.5).cumsum(axis=0), cycle='Grays_r', lw=2)

5.图例、colorbar灵活设置

  • 图例、colorbar位置指定

  • 图例、colorbar:On-the-fly,

  • 图例、colorbar:Figure-wide

  • 图例外观个性化:可轻松设置图例顺序、位置、颜色等等,

  • colorbar外观个性化:可轻松设置colorbar的刻度、标签、宽窄等,

6.更加优化的绘图指令

7、整合地图库Cartopy和basemap

Cartopybasemap是Python里非常强大的地图库,proplot将cartopy和basemap进行了整合,解决了basemap使用需要创建新的axes、cartopy使用时代码冗长等缺陷。

个性化设置,

支持cartopy中的各种投影,'cyl', 'merc', 'mill', 'lcyl', 'tmerc', 'robin', 'hammer', 'moll', 'kav7', 'aitoff', 'wintri', 'sinu', 'geos', 'ortho', 'nsper', 'aea', 'eqdc', 'lcc', 'gnom', 'npstere', 'nplaea', 'npaeqd', 'npgnom', 'igh', 'eck1', 'eck2', 'eck3', 'eck4', 'eck5', 'eck6'

当然,也支持basemap中的各种投影,'cyl', 'merc', 'mill', 'cea', 'gall', 'sinu', 'eck4', 'robin', 'moll', 'kav7', 'hammer', 'mbtfpq', 'geos', 'ortho', 'nsper', 'vandg', 'aea', 'eqdc', 'gnom', 'cass', 'lcc', 'npstere', 'npaeqd', 'nplaea'。

8、更美观的colormaps, colors和fonts

proplot除了整合seaborn, cmocean, SciVisColor及Scientific Colour Maps projects中的colormaps之外,还增加了新的colormaps,同时增加PerceptualColormap方法来制作colormaps(貌似比Matplotlib的ListedColormap、LinearSegmentedColormap好用),ContinuousColormap和DiscreteColormap方法修改colormaps等等。

proplot中可非常便利的添加字体。

  • proplot新增colormaps

  • PerceptualColormap制作colormaps

  • 将多个colormaps融合

  • ContinuousColormap和DiscreteColormap方法修改colormaps

  • proplot添加字体

自定义的.ttc、.ttf等格式字体保存~/.proplot/fonts文件中。

9、全局参数设置更灵活

新的rc方法更新全局参数

import proplot as pplt
import numpy as np# 多种方法Update全局参数
pplt.rc.metacolor = 'gray6'
pplt.rc.update({'fontname': 'Source Sans Pro', 'fontsize': 11})
pplt.rc['figure.facecolor'] = 'gray3'
pplt.rc.axesfacecolor = 'gray4'# 使用Update后的全局参数:with pplt.rc.context法
with pplt.rc.context({'suptitle.size': 13}, toplabelcolor='gray6', metawidth=1.5):fig = pplt.figure(figwidth=6, sharey='limits', span=False)axs = fig.subplots(ncols=2)
N, M = 100, 7
state = np.random.RandomState(51423)
values = np.arange(1, M + 1)
cycle = pplt.get_colors('grays', M - 1) + ['red']
for i, ax in enumerate(axs):data = np.cumsum(state.rand(N, M) - 0.5, axis=0)lines = ax.plot(data, linewidth=3, cycle=cycle)# 使用Update后的全局参数:format()法
axs.format(grid=False, xlabel='xlabel', ylabel='ylabel',toplabels=('Column 1', 'Column 2'),suptitle='Rc settings demo',suptitlecolor='gray7',abc='[A]', abcloc='l',title='Title', titleloc='r', titlecolor='gray7'
)# 恢复设置
pplt.rc.reset()

全局设置'ggplot', 'seaborn'的style

import proplot as pplt
import numpy as np
state = np.random.RandomState(51423)
data = state.rand(10, 5)# Set up figure
fig, axs = pplt.subplots(ncols=2, nrows=2, span=False, share=False)
axs.format(suptitle='Stylesheets demo')
styles = ('ggplot', 'seaborn', '538', 'bmh')# 直接使用format()方法
for ax, style in zip(axs, styles):ax.format(style=style, xlabel='xlabel', ylabel='ylabel', title=style)ax.plot(data, linewidth=3)

END


本篇到这里就结束了。想学习更多Python、人工智能、交叉学科相关知识,点击关注博主,带你从基础到进阶。若有需要提供科研指导、代码支持,资源获取或者付费咨询的伙伴们,可以添加博主个人联系方式!

码字不易,希望大家可以点赞+收藏+关注+评论!


来源:https://github.com/lukelbd/proplot

参考:https://mp.weixin.qq.com/s/8M5GRGj13hcfnnruqz7kmA

声明:部分内容来源于网络,仅供读者学术交流之目的。文章版权归原作者所有。如有不妥,请联系删除。

相关文章:

【绘图】比Matplotlib更强大:ProPlot

✅作者简介:在读博士,伪程序媛,人工智能领域学习者,深耕机器学习,交叉学科实践者,周更前沿文章解读,提供科研小工具,分享科研经验,欢迎交流!📌个人…...

经典七大比较排序算法 ·上

经典七大比较排序算法 上1 选择排序1.1 算法思想1.2 代码实现1.3 选择排序特性2 冒泡排序2.1 算法思想2.2 代码实现2.3 冒泡排序特性3 堆排序3.1 堆排序特性:4 快速排序4.1 算法思想4.2 代码实现4.3 快速排序特性5 归并排序5.1 算法思想5.2 代码实现5.3 归并排序特性…...

【网络安全工程师】从零基础到进阶,看这一篇就够了

学前感言 1.这是一条需要坚持的道路,如果你只有三分钟的热情那么可以放弃往下看了。 2.多练多想,不要离开了教程什么都不会,最好看完教程自己独立完成技术方面的开发。 3.有问题多google,baidu…我们往往都遇不到好心的大神,谁…...

素描-基础

# 如何练习排线第一次摸板子需要来回的排线,两点然后画一条线贯穿两点画直的去练 练线的定位叫做穿针引线法或者两点一线法 练完竖线练横线 按照这样去练顺畅 直线曲线的画法 直线可以按住shift键 练习勾线稿 把线稿打开降低透明度去勾线尽量一笔的去练不要压…...

Elasticsearch:高级数据类型介绍

在我之前的文章 “Elasticsearch:一些有趣的数据类型”,我已经介绍了一下很有趣的数据类型。在今天的文章中,我再进一步介绍一下高级的数据类型,虽然这里的数据类型可能和之前的一些数据类型有所重复。即便如此,我希望…...

Golang每日一练(leetDay0012)

目录 34. 查找元素首末位置 Find-first-and-last-position-of-element-in-sorted-array 🌟🌟 35. 搜索插入位置 Search Insert Position 🌟 36. 有效的数独 Valid Sudoku 🌟🌟 🌟 每日一练刷题专栏 …...

Web前端:6种基本的前端编程语言

如果你想在前端web开发方面开始职业生涯,学习JavaScript是必须的。它是最受欢迎的编程语言,它功能广泛,功能强大。但JavaScript并不是你唯一需要知道的语言。HTML和CSS对于前端开发至关重要。他们将帮助你开发用户友好的网站和应用程序。什么…...

九【springboot】

Springboot一 Spring Boot是什么二 SpringBoot的特点1.独立运行的spring项目三 配置开发环境四 配置开发环境五 创建 Spring Boot 项目1.在 IntelliJ IDEA 欢迎页面左侧选择 Project ,然后在右侧选择 New Project,如下图2.在新建工程界面左侧&#xff0c…...

《程序员成长历程的四个阶段》

阶段一:不知道自己不知道(Unconscious incompetence) 大学期间,我和老师做过一些小项目,自认为自己很牛,当时还去过一些公司面试做兼职,但是就是不知道为什么没有回复。那个时期的我,压根不知道自己不知道&…...

【SpringBoot】Spring data JPA的多数据源实现

一、主流的多数据源支持方式 将数据源对象作为参数,传递到调用方法内部,这种方式增加额外的编码。将Repository操作接口分包存放,Spring扫描不同的包,自动注入不同的数据源。这种方式实现简单,也是一种“约定大于配置…...

uni-app基础知识介绍

uni-app的基础知识介绍 1、在第一次将代码运行在微信开发者工具的时候,应该进行如下的配置: (1)将微信开发者工具路径进行配置; [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Lbyk5Jw2-16790251840…...

Word2010(详细布局解释)

目录一、界面介绍二、选项卡1、文件选项卡(保存、打开、新建、打印、保存并发送、选项)2、开始选项卡(剪贴板、字体、段落、样式、编辑)3、插入选项卡(页、表格、插图、链接、页眉页脚、文本、符号)4、页面…...

Spring如何实现Quartz的自动配置

Spring如何实现Quartz的自动配置1. 开启Quartz自动配置2. Quartz自动配置的实现过程2.1 核心类图2.2 核心方法3. 任务调度执行3.1 大致流程3.2 调整线程池的大小如果想在应用中使用Quartz任务调度功能,可以通过Spring Boot实现Quartz的自动配置。以下介绍如何开启Qu…...

计算机组成原理——作业四

一. 单选题(共11题,33分) 1. (单选题, 3分)四片74181 ALU和一片74182 CLA器件相配合,具有如下进位传递功能:________。 A. 行波进位B. 组内先行进位,组间行波进位C. 组内先行进位,组间先行进位D. 组内行波进位,组间先行进位 我的答案: C 3…...

2023前端面试题(经典面试题)

经典面试题Vue2.0 和 Vue3.0 有什么区别?vue中计算属性和watch以及methods的区别?单页面应用和多页面应用区别及优缺点?说说 Vue 中 CSS scoped 的原理?谈谈对Vue中双向绑定的理解?为什么vue2和vue3语法不可以混用&…...

【Linux内网穿透】使用SFTP工具快速实现内网穿透

文章目录内网穿透简介1. 查看地址2.局域网测试连接3.创建tcp隧道3.1. 安装cpolar4.远程访问5.固定TCP地址内网穿透简介 是一种通过公网将内网服务暴露出来的技术,可以使得内网服务可以被外网访问。以下是内网穿透的一些应用: 远程控制:通过内…...

SQL语句性能分析

1. 数据库服务器的优化步骤 当我们遇到数据库调优问题的时候,该如何思考呢?这里把思考的流程整理成下面这张图。 整个流程划分成了 观察(Show status) 和 行动(Action) 两个部分。字母 S 的部分代表观察&…...

【K3s】第28篇 详解 k3s-killall.sh 脚本

目录 k3s-killall.sh 脚本 k3s-killall.sh 脚本 为了在升级期间实现高可用性,当 K3s 服务停止时,K3s 容器会继续运行。 要停止所有的 K3s 容器并重置容器的状态,可以使用k3s-killall.sh脚本。 killall 脚本清理容器、K3s 目录和网络组件&a…...

生成时序异常样本-学习记录-未完待续

1.GAN&VAE|时间序列生成及异常注入那些事儿:主要讲了数据增广,用GAN、WGAN、DCGAN、VAE,有给几个代码的github的链接,非常有用 2.时序异常检测综述,写的非常好 3.自编码器原理讲解,后面还附…...

自定义类型的超详细讲解ᵎᵎ了解结构体和位段这一篇文章就够了ᵎ

目录 1.结构体的声明 1.1基础知识 1.2结构体的声明 1.3结构体的特殊声明 1.4结构体的自引用 1.5结构体变量的定义和初始化 1.6结构体内存对齐 那对齐这么浪费空间,为什么要对齐 1.7修改默认对齐数 1.8结构体传参 2.位段 2.1什么是位段 2.2位段的内存分配…...

OpenLayers 可视化之热力图

注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

【HTTP三个基础问题】

面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

Ubuntu Cursor升级成v1.0

0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开,快捷键也不好用,当看到 Cursor 升级后,还是蛮高兴的 1. 下载 Cursor 下载地址:https://www.cursor.com/cn/downloads 点击下载 Linux (x64) ,…...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术,通过密码学、共识机制和智能合约等核心组件,实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点:数据存储在网络中的多个节点(计算机),而非…...

C++实现分布式网络通信框架RPC(2)——rpc发布端

有了上篇文章的项目的基本知识的了解,现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...