【ML】异常检测、二分类问题
【ML】异常检测、二分类问题
- 1. 异常检测、二分类问题
- 1.1 异常检测(Anomaly Detection)
- 1.2 二分类问题(Binary Classification)
- 1.3 异常检测与二分类问题的对比
- 1.4 总结
- 2. 模型额训练与评估
- 3. 为什么会出现比较高的误识别(导致假阳性、假阴性是识别结果的原因)
- 4. 基于gaussian假设下的异常行为检测
- 5. 基于 auto-encoder 深度模型训练、svm、随机森林 的 异常检测模型
1. 异常检测、二分类问题
异常检测(Anomaly Detection) 和 二分类问题(Binary Classification) 都是机器学习中的重要任务,它们在很多应用场景中都有广泛的应用。尽管它们有一些相似之处,但它们的目标、挑战和特点有所不同。
1.1 异常检测(Anomaly Detection)
定义:
- 异常检测是一种用于识别数据集中不同于正常模式的异常点或异常行为的方法。这些异常点通常是稀少的、未标注的,可能代表某种异常情况或错误。
特点:
-
数据不平衡:
- 在异常检测任务中,异常数据点通常只占数据集中的极少数,大部分数据都是正常的。这种数据不平衡是异常检测的主要挑战之一。
-
无监督学习为主:
- 异常检测通常采用无监督学习方法,因为异常点在数据集中较为稀少且难以标注。模型需要在没有标签或仅有少量标签的情况下识别异常。
-
复杂的异常模式:
- 异常可能表现为不同的模式或类型,比如离群点、趋势变化、异常的时间序列模式等。模型需要具备识别多种复杂异常的能力。
-
应用场景广泛:
- 异常检测在金融欺诈检测、网络安全、设备故障监测、健康监控等领域有广泛应用。这些领域中的异常通常代表潜在的风险或问题,因此准确识别异常非常重要。
-
可解释性要求高:
- 在某些应用中,理解和解释为什么某个数据点被认为是异常非常重要。例如,在医疗或金融领域,用户需要清楚地知道异常的原因,以便采取相应措施。
1.2 二分类问题(Binary Classification)
定义:
- 二分类问题是指将输入数据分为两个类别的分类任务。模型的目标是根据输入特征,将数据点分类到两个互斥的类别之一。
特点:
-
明确的标签:
- 在二分类问题中,通常有明确的标签数据,即每个数据点都标注为“正类”或“负类”。这使得监督学习方法可以直接应用。
-
平衡和不平衡问题:
- 二分类问题中,有时两个类别的数据量相对均衡,但在某些应用场景中(如欺诈检测),数据可能会严重不平衡。这时,正负类的比例失衡会影响模型的性能,需要特别处理。
-
多样的算法:
- 二分类问题可以使用多种机器学习算法来解决,如逻辑回归、支持向量机、决策树、随机森林、神经网络等。不同算法在不同数据集和任务上的表现各不相同。
-
评估指标:
- 常用的评估指标包括准确率、精确率、召回率、F1值、AUC-ROC等。这些指标帮助评估模型在二分类任务上的表现,并指导模型的改进。
-
广泛应用:
- 二分类问题应用广泛,包括垃圾邮件检测、肿瘤分类(良性与恶性)、情感分析(正面与负面)、信用评分(信用良好与不良)等。
1.3 异常检测与二分类问题的对比
| 特点 | 异常检测 | 二分类问题 |
|---|---|---|
| 数据分布 | 通常极度不平衡(异常样本极少) | 可以平衡,也可能不平衡 |
| 学习类型 | 通常为无监督或半监督学习 | 主要是监督学习 |
| 应用场景 | 异常识别,如欺诈检测、故障检测 | 分类任务,如垃圾邮件检测、情感分析 |
| 标签可用性 | 异常样本少且通常未标注 | 大多数样本都有明确标签 |
| 模型复杂性 | 需要复杂模型来识别多种异常模式 | 模型相对简单,常用线性或非线性模型 |
| 可解释性 | 高度重视异常原因的解释 | 可解释性依赖具体应用和需求 |
1.4 总结
- 异常检测 主要用于识别数据中的异常点或异常行为,通常涉及极端的数据不平衡和无监督学习方法。它在风险监控和问题预警领域非常重要。
- 二分类问题 是将数据点分类到两个类别的任务,通常使用监督学习方法,适用于需要明确分类结果的场景。
两者尽管在某些方面存在相似之处,但其应用场景和挑战有所不同。



2. 模型额训练与评估



3. 为什么会出现比较高的误识别(导致假阳性、假阴性是识别结果的原因)


4. 基于gaussian假设下的异常行为检测






5. 基于 auto-encoder 深度模型训练、svm、随机森林 的 异常检测模型


相关文章:
【ML】异常检测、二分类问题
【ML】异常检测、二分类问题 1. 异常检测、二分类问题1.1 异常检测(Anomaly Detection)1.2 二分类问题(Binary Classification)1.3 异常检测与二分类问题的对比1.4 总结 2. 模型额训练与评估3. 为什么会出现比较高的误识别&#x…...
8.8-配置python3环境+python语法的使用
1.环境 python2 ,python3 [rootpython ~]# yum list installed|grep python [rootpython ~]# yum list installed|grep epel epel-release.noarch 7-11 extras #安装python3 [rootpython ~]# yum -y install python3…...
高质量WordPress下载站模板5play主题源码
5play下载站是由国外站长开发的一款WordPress主题,主题简约大方,为v1.8版本, 该主题模板中包含了上千个应用,登录后台以后只需要简单的三个步骤就可以轻松发布apk文章, 我们只需要在WordPress后台中导入该主题就可以…...
【C++】类的概念与基本使用介绍
C类是面向对象编程(OOP)的基础,它允许我们将数据(属性)和行为(方法)封装在一起,形成一个自定义的数据类型。以下是C类的基本概念、特点、特性以及使用注意事项,最后会提供…...
基于Python和OpenCV的图像处理的轮廓查找算法及显示
文章目录 概要轮廓查找算法示例代码代码解释小结 概要 在图像处理中,轮廓查找是一个重要的步骤,它可以帮助我们识别图像中的形状和边界。Python结合OpenCV库可以非常方便地实现这一功能。本文将详细介绍如何使用Python和OpenCV来查找图像中的轮廓&#…...
使用ant design的modal时,发现自定义组件的样式(组件高度)被改变了!
一 问题描述 在项目中,自定义了一个组件,分别在界面和 antd的modal中都有使用到。但是突然发现,界面中的组件样式跟modal中的组件样式高度不一样。modal中的组件整体要比页面中的组件要高一点。 项目中的自定义组件比较复杂,因此&…...
NLP从零开始------8文本进阶处理之文本向量化
1. 文本向量化概述 随着计算机计算能力的大幅度提升,机器学习和深度学习都取得了长足的发展。NLP越来越多的通过应用机器学习和深度学习工具解决问题,例如通过深度学习模型从网络新闻报道中分析出关键词汇与舆论主题并构建关系图谱。在这种背景下&#x…...
【网络编程】字节序,IP地址、点分十进制、TCP与UDP的异同
记录学习,思维导图绘制 目录 1、字节序编辑 2、IP地址 3、点分十进制 4、TCP与UDP的异同 1、字节序 2、IP地址 3、点分十进制 4、TCP与UDP的异同...
关于k8s的pvc存储卷
目录 1.PVC 和 PV 1.1 PV 1.2 PVC 1.3 StorageClass 1.4 PV和PVC的生命周期 2.实战演练 2.1 创建静态pv 2.2 创建动态pv 3.总结 1.PVC 和 PV 1.1 PV PV 全称叫做 Persistent Volume,持久化存储卷。它是用来描述或者说用来定义一个存储卷的,…...
【物联网设备端开发】ESP开发工具:QEMU的使用方法
概要 本文提供了一些运行QEMU的ESP特定说明。有关QEMU的一般使用问题,请参阅官方文档:https://www.qemu.org/documentation/. 编译 QEMU 准备工作 在此之前,请查看有关构建先决条件的QEMU文档。如果你在Linux主机上构建QEMU,你…...
c++中std::endl 和“\n“ 这两个换行符有什么区别
std::endl 和 "\n" 都用于在C中生成换行符,但它们之间有一些重要的区别 std::endl: 功能:输出一个换行符,并刷新输出流(即缓冲区)。作用:确保所有数据立即输出到目的地,例…...
http中get和post怎么选
5.4.2.怎么选择1.如果你是想从服务器上获取资源,建议使用GET请求,如果你这个请求是为了向服务器提交数据,建议使用POST请求。2.大部分的form表单提交,都是post方式,因为form表单中要填写大量的数据,这些数据…...
数据分析及应用:快手直播间人员在线分析
目录 0 需求描述 1、进入直播间的高峰期为?(以进入用户数衡量) 2、晚上 11 点,哪个直播间的进入人数最多? 3、20:00-23:00,娱乐类、搞笑类,进入人数最多直播间分别是? 4、娱乐类、搞笑类,人均在线时长(退出时间-进入时间)最长的直播间分别是? 5、同时在线人数…...
【Python】nn.nn.CircularPad1、2、3d函数和nn.ConstantPad1、2、3d函数详解和示例
前言 在深度学习中,尤其是在处理图像、音频或其他多维数据时,数据填充(Padding)是一个常见的操作。填充不仅可以保持数据的空间维度,还能在卷积操作中避免信息丢失。PyTorch提供了多种填充方式,其中nn.Cir…...
LearnOpenGL——混合、面剔除
LearnOpenGL——混合、面剔除 混合 Blending一、丢弃片段 Alpha Test二、混合 Alpha Blending渲染顺序 面剔除一、环绕顺序二、面剔除 混合 Blending OpenGL中,混合(Blending)通常是实现物体透明度(Transparency)的一种技术。透明的物体可以是完全透明的࿰…...
视频网站为何热衷于SCDN
视频网站为何热衷于SCDN?随着互联网技术的飞速发展,视频网站已成为人们日常生活中不可或缺的一部分。无论是观看高清电影、热门剧集,还是直播体育赛事、游戏竞技,视频网站都以其丰富的内容和便捷的访问方式吸引了无数用户。然而&a…...
Redis与DataBase保持数据一致性
文章目录 1. 读取数据2. 写数据2.1 先操作缓存2.2 先操作数据库 在我们系统中缓存最常用的策略是:服务端需要同时维系DB和Cache,并且是以DB的结果为准, Cache-Aside Pattern(缓存分离模式、旁路缓存)。 1. 读取数据 当…...
解决 MacOS 连接公司 VPN 成功但是不能网络的问题
目录 解决办法2024 Mac mini 爆料 解决办法 操作比较简单,修改配置文件即可(如果没有则需要手动创建)。 sudo vim /etc/ppp/options在此文件下,加入 plugin L2TP.ppp: plugin L2TP.ppp如果文件里有l2tpnoipsec&…...
【Kubernetes】k8s集群之Pod容器资源限制和三种探针
目录 一、Pod容器的资源限制 1.资源限制 2.Pod 和容器的资源请求与限制 3.CPU 资源单位 4.内存资源单位 二、Pod容器的三种探针 1.探针的三种规则 2.Probe支持三种检查方法: 一、Pod容器的资源限制 1.资源限制 当定义 Pod 时可以选择性地为每个容器设定所…...
从古代驿站体系看软件安全管控@安全历史04
在古代,车、马都很慢,信息传递很不顺畅,中央的政令又是如何传达至地方的呢?实际上,很多朝代都有专门的驿站制度,可以保障全国各地的信息传递,对于维护统治和稳定有着关键作用。 若将国家比作一个…...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
