Kylin系列(二)使用
接上一章《Kylin系列(一)入门》
1. Kylin使用
1.1. 数据准备
1.1.1. 数据导入
在使用Apache Kylin时,数据导入是一个非常重要的环节,因为它直接影响到Kylin的性能、稳定性和易用性。以下是关于Apache Kylin数据导入的一些详细介绍:
-
导入数据的准备
在开始导入数据之前,需要确保已经完成了Apache Kylin的安装和配置,并且已经准备好要导入的数据文件。这些数据文件可以是文本文件、CSV文件、JSON文件、ORC文件、Parquet文件等,只要它们符合Apache Kylin的要求即可。 -
创建数据模型
在导入数据之前,需要先创建一个数据模型,用来描述要导入的数据的结构和属性。具体来说,需要使用Kylin的Cube Builder工具来创建一个Cube,将数据加载到Cube中进行预聚合处理。在创建数据模型时,需要指定数据源的路径、数据文件的格式和编码、数据文件的分区和压缩方式等信息。 -
导入数据到Kylin
在创建好数据模型后,可以使用Kylin的Web UI或命令行工具来将数据导入到Kylin中。具体来说,可以使用以下命令来导入数据:
$KYLIN_HOME/bin/load-data.sh --conf $KYLIN_HOME/conf --cube my_cube --data-path /path/to/data --hbase-config $KYLIN_HOME/conf/hbase-site.xml
该命令会将指定路径下的数据文件导入到名为my_cube的Cube中,并使用指定的HBase配置文件来进行数据存储和管理。在执行该命令时,需要确保已经正确配置了Kylin的环境变量和HBase的配置文件。
- 查看导入数据的效果
在成功导入数据后,可以通过查询Kylin的元数据信息、查看数据文件的存储情况和运行一些测试查询等方式来检查导入数据的效果。如果发现数据导入过程中存在任何问题或错误,可以通过调整数据模型、数据导入参数或HBase的配置文件等方式来解决这些问题。
1.1.2. 数据清洗
在使用Apache Kylin时,数据清洗是一个非常重要的环节,因为它直接影响到Kylin的性能、稳定性和易用性。以下是关于Apache Kylin数据清洗的一些详细介绍:
-
数据清洗的重要性
在现实世界中,数据往往存在各种问题和错误,例如缺失值、异常值、重复值、格式错误等。如果不及时对这些数据进行清洗和处理,可能会导致Kylin的性能下降、查询结果不准确等问题。因此,数据清洗是使用Kylin进行数据分析和挖掘的重要前提之一。 -
数据清洗的方法
在使用Kylin进行数据清洗时,可以采取以下方法:
- 数据筛选:根据一定的条件和规则,从原始数据中筛选出符合条件的数据,去除不符合条件的数据。
- 数据转换:将原始数据转换成更适合分析和挖掘的格式和形式,例如将文本数据转换成数值数据、将日期数据转换成时间戳数据等。
- 数据归一化:将不同单位、不同尺度的数据进行归一化处理,使其具有可比性和一致性。
- 数据集成:将多个不同的数据源和数据文件合并成一个统一的数据集,以便于进行统一的分析和挖掘。
- 数据清洗脚本:编写一些专门的数据清洗脚本,用来自动地识别和处理数据中的问题和错误。
- 使用Apache Calcite进行数据清洗
Apache Calcite是一个开源的、基于Java的数据处理框架,它可以用来进行数据清洗、数据转换、数据归一化等操作。在使用Kylin进行数据分析和挖掘时,可以使用Calcite来对原始数据进行预处理和清洗,以提高数据质量和分析结果的准确性。具体来说,可以使用以下命令来使用Calcite进行数据清洗:
java -jar $CALCITE_HOME/lib/calcite-...-jar-with-dependencies.jar --input my_input.csv --output my_output.csv --type csv --schema my_schema.json --query "SELECT * FROM my_table WHERE age > 18 AND gender = 'female'"
该命令会使用Calcite的SQL查询语言和灵活架构处理数据质量、噪声去除、缺失值、类型转换和归一化等问题。需要注意的是,需要根据实际情况选择合适的数据清洗方法和工具,并确保数据清洗过程中的数据完整性和准确性。
- 使用DataPipeline进行数据清洗
DataPipeline是一个基于Python的数据处理和清洗工具,它可以用来帮助用户零开发完成自定义表名、字段名称,过滤、替换数据等操作。在使用Kylin进行数据分析和挖掘时,可以使用DataPipeline来对原始数据进行预处理和清洗,以提高数据质量和分析结果的准确性。具体来说,可以使用以下命令来使用DataPipeline进行数据清洗:
datapipeline create-job --name my_job --description "清洗我的数据" --input my_input.csv --output my_output.csv --operation filter --filter-condition "age > 18 AND gender = 'female'"
1.1.3. 数据验证
在使用Apache Kylin时,数据验证是一个非常重要的环节,因为它直接影响到Kylin的性能、稳定性和易用性。以下是关于Apache Kylin数据验证的一些详细介绍:
-
数据验证的重要性
在现实世界中,数据往往存在各种问题和错误,例如缺失值、异常值、重复值、格式错误等。如果不及时对这些数据进行验证和处理,可能会导致Kylin的性能下降、查询结果不准确等问题。因此,数据验证是使用Kylin进行数据分析和挖掘的重要前提之一。 -
数据验证的方法
在使用Kylin进行数据验证时,可以采取以下方法:
- 数据筛选:根据一定的条件和规则,从原始数据中筛选出符合条件的数据,去除不符合条件的数据。
- 数据转换:将原始数据转换成更适合分析和挖掘的格式和形式,例如将文本数据转换成数值数据、将日期数据转换成时间戳数据等。
- 数据归一化:将不同单位、不同尺度的数据进行归一化处理,使其具有可比性和一致性。
- 数据集成:将多个不同的数据源和数据文件合并成一个统一的数据集,以便于进行统一的分析和挖掘。
- 数据验证脚本:编写一些专门的数据验证脚本,用来自动地识别和处理数据中的问题和错误。
- 使用Apache Calcite进行数据验证
Apache Calcite是
相关文章:
Kylin系列(二)使用
接上一章《Kylin系列(一)入门》 1. Kylin使用 1.1. 数据准备 1.1.1. 数据导入 在使用Apache Kylin时,数据导入是一个非常重要的环节,因为它直接影响到Kylin的性能、稳定性和易用性。以下是关于Apache Kylin数据导入的一些详细介绍: 导入数据的准备 在开始导入数据之前…...

CI/CD——CI持续集成实验
目录 一. 安装Docker 二. 部署Jenkins 三. 配置邮箱 四. Harbor部署 五. Nexus Repository部署 五. sonarqube安装 六. 配置Docker 七. jenkins系统配置sonarqube 八. 配置pipeline 九. 构建并集成 一. 安装Docker docker-ce镜像_docker-ce下载地址_docker-ce安装教程…...

2.4 大模型数据基础:预训练阶段数据详解 ——《带你自学大语言模型》系列
本系列目录 《带你自学大语言模型》系列部分目录及计划,完整版目录见:带你自学大语言模型系列 —— 前言 第一部分 走进大语言模型(科普向) 第一章 走进大语言模型 1.1 从图灵机到GPT,人工智能经历了什么…...

Kali Linux——网络安全的瑞士军刀
一、引言 在网络安全的领域中,Kali Linux 宛如一把强大而全能的瑞士军刀,为安全研究人员和专业人士提供了丰富的工具和资源。本文将深入探讨 Kali Linux 的特点、优势、常用工具以及实际应用场景,带您领略这一强大操作系统的魅力。 二、Kal…...
UML建模-测试用例
用例可用于测试系统的正确性和有效性。 正确性表明系统的实现符合规格说明。有效性保证开发的系统是用户真正需要的系统。有效性检查一般在 系统开发之前进行。当用例模型构造完成后,开发者将模型交给用户讨论,由用户检查模型能否满足他们对系统的需求。…...
Python知识点:如何使用Socket模块进行网络编程
Python 的 socket 模块提供了一个底层网络接口,允许你通过编程进行网络通信。使用 socket 模块可以编写客户端和服务器端程序,从而实现数据在网络上的传输。以下是如何使用 socket 模块进行网络编程的详细说明。 1. 创建一个 Socket 首先,你…...

培训第二十一天(mysql用户创建与授权、角色创建)
上午 1、环境准备 [rootmysql ~]# rm -rf /etc/my.cnf //清空/etc目录下的my.cnf[rootmysql ~]# yum -y remove mariadb //移除mariadb[rootmysql ~]# find / -name "*mysql*" -exec rm -rf {} \; //删除mysql所有遗留文件 2、安装mysql绿包 [rootmysql ~]…...
makefile基本语法
在编写复杂的程序项目时,Makefile 是一个非常有用的工具,它能自动化构建过程。以下是一些基本的 Makefile 语法介绍: 基本结构: target: dependenciescommandtarget:构建目标,通常是一个文件,如…...
白骑士的PyCharm教学实战项目篇 4.4 大数据处理与分析
系列目录 上一篇:白骑士的PyCharm教学实战项目篇 4.3 自动化测试与持续集成 随着数据量的爆炸性增长,大数据处理与分析成为现代数据科学的重要课题。PyCharm提供了强大的功能,可以帮助开发者高效地进行大数据环境的配置与连接…...

无人机之民用无人机用途分类篇
一、航拍无人机 用于航拍摄影和电影制作,提供空中视角的拍摄服务。可用于电影制作、广告拍摄、房地产销售等。 二、物流无人机 用于快递和货物运输,提高物流效率,可以到达传统配送方式难以覆盖的地区,在突发事件如自然灾害、疫…...
Android10 修改设备名称
A10和A12的设备名称修改是不同的,A10设备名称修改分好几个位置 修改wifi默认名称 在framework/base模块下 diff --git a/core/res/res/values/strings.xml b/core/res/res/values/strings.xml index 9041a7c3a14..7a1e63688c4 100644 --- a/core/res/res/values/…...
go testing 包
Go语言的testing包提供了一套丰富的测试工具,用于编写和运行测试用例。以下是testing包中一些常用的函数和类型: func TestMain(m *testing.M): 这是一个特殊的函数,用于执行测试的主函数。如果定义了TestMain,那么在运行go test时…...
基于phpstudy的靶场搭建和github加速
微软商店下载 watt toolkit,然后在侧边栏选择网络加速,勾选 github,就可以快速访问 github 1、下载搭建 sqlilabs github 找到 sqlilabs 靶场,点击 code,下载 zip解压之后,整体移动到 phpstudy_pro 文件夹…...

【数据结构】Map与Set
前言 前两篇文章我们研究了二叉搜索树与哈希表的结构与特点,他们二者是Map与Set这两个接口实现的底层结构,他们利用了搜索树与哈希表查找效率高这一特点,是一种专门用来进行搜索操作的容器或数据结构。本篇文章就让我们一起来梳理这两个接口的…...

Flamingo: a Visual Language Model for Few-Shot Learning
发表时间:NeurIPS 2022 论文链接:https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf 作者单位:DeepMind Motivation:仅使用少量注释示例可以快速适应新任务…...
flume性能调优
作者:南墨 1.Source性能调优 1.1 Spooldir Source 使用Spooldir Source采集日志数据时,若每行日志数据<100bp,可以通过将多行合并传输来提升传输性能 建议合并时根据数据长度来确定多少行合并为一个单位进行传输,合并后的长…...
mysql 字符串转数组
在 MySQL 中,可以使用内置的字符串函数 SUBSTRING_INDEX() 和 REPLACE() 来实现将字符串转换为数组。 首先,使用 REPLACE() 函数将字符串中的分隔符替换为空格,然后使用 SUBSTRING_INDEX() 函数将字符串按空格分割成多个子字符串。最后&…...

UE基础 —— 术语
目录 Project Blueprint Class Object Actor Casting Component Pawn Character Player Controller AI Controller Player State Game Mode Game State Brush Volume Level World Project 项目(Project)包含游戏的所有内容,…...

kubernets学习笔记——使用kubeadm构建kubernets集群及排错
使用kubeadm构建kubernets集群 一、准备工作1、repo源配置:阿里巴巴开源镜像源2、更新软件包并安装必要的系统工具3、同步时间4、禁用selinux5、禁用交换分区swap6、关闭防火墙 二、安装docker-ce、docker、cri-docker1、安装docker-ce2、开启内核转发,转…...

简述MYSQL聚簇索引、二级索引、索引下推
一丶聚簇索引 InnoDB的索引分为两种: 聚簇索引:一般创建表时的主键就会被mysql作为聚簇索引,如果没有主键则选择非空唯一索引作为聚簇索引,都没有则隐式创建一个索引作为聚簇索引;辅助索引:也就是非聚簇索…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...

C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...

Vue ③-生命周期 || 脚手架
生命周期 思考:什么时候可以发送初始化渲染请求?(越早越好) 什么时候可以开始操作dom?(至少dom得渲染出来) Vue生命周期: 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...