从PyTorch官方的一篇教程说开去(6.2 - 张量 tensor 矩阵运算等)
您的进步和反馈是我写作最大的动力,小伙伴来个三连呗!共勉~
话不多说,书接上文,需要温习的小伙伴请移步 - 从PyTorch官方的一篇教程说开去(6.1 - 张量 tensor 基本操作)-CSDN博客
借图镇楼 -

1 - 矩阵乘法(点积或外积,整个行乘以整个列):
shape = (4,4)
ones_tensor = torch.ones(shape)
y1 = ones_tensor @ ones_tensor
print(f"{y1}\n")shape = (4,4)
ones_tensor = torch.ones(shape)
y2 = torch.matmul(ones_tensor,ones_tensor.T)
print(f"{y2}\n")z1 = torch.rand_like(y1)
torch.matmul(ones_tensor, ones_tensor.T, out=z1)
print(f"{z1}\n")

- 使用
@符号,等同于调用matmul函数,进行矩阵乘法。由于ones_tensor是一个 4x4 的全1矩阵,其与自身的乘法结果将是一个元素为4的矩阵。ones_tensor.T表示转置。用out参数,可以就地执行矩阵乘法,结果存储在z1中。这样可以避免额外的内存分配。
2 - 元素级别的点乘(dot product):
y3 = ones_tensor * ones_tensor
print(f"{y3}\n")y4 = torch.mul(ones_tensor,ones_tensor.T)
print(f"{y4}\n")z2 = torch.rand_like(y3)
torch.mul(ones_tensor,ones_tensor.T,out=z2)

- 元素级别的点乘,也就是逐元素相乘。对于全1矩阵,结果是每个元素都是1。同上例,提供3种算符。
3 - torch没有官方定义叉乘(Cross Product):
# 定义两个三维向量
vector_a = torch.tensor([1.0, 2.0, 3.0])
vector_b = torch.tensor([4.0, 5.0, 6.0])# 计算叉乘
cross_product = torch.linalg.cross(vector_a, vector_b)print(f"Vector A: {vector_a}")
print(f"Vector B: {vector_b}")
print(f"Cross Product: {cross_product}")

- 尽管官方没有,但是为了区别这几个容易混淆的概念,我们还是配个例子。叉乘(Cross Product)通常是针对两个三维向量而言的,它返回一个向量,该向量垂直于原来的两个向量,并遵循右手定则。
4 - 单元素张量:
agg = ones_tensor.sum()
agg_item = agg.item()
print(agg_item,type(agg_item))

- ones_tensor 是一个 4x4 的单位矩阵,其元素总和将是 4x4=16。item() 方法用于将这个张量转换成一个 Python 标量(即一个单一数值)。在进行一些扁平化的操作时候会用到。
5 - 就地计算函数(为节约存储,这些都很常用):
原地操作函数(in-place operations) 以_结尾
add_(): 原地加法。
sub_(): 原地减法。
mul_(): 原地乘法。
div_(): 原地除法。copy_(): 原地复制。
t_(): 原地转置。
fill_(): 原地填充。
zero_(): 原地清零。clamp_(): 原地限制值。
clamp_min_(): 原地最小值限制。
clamp_max_(): 原地最大值限制。sum_(): 原地求和。
mean_(): 原地求平均值。
std_(): 原地求标准差。
var_(): 原地求方差。
norm_(): 原地求范数。
renorm_(): 原地重规范化。addmm_(): 原地矩阵乘法加法。
addr_(): 原地地址加法。
addbmm_(): 原地二维矩阵乘法加法。
baddbmm_(): 原地批量二维矩阵乘法加法。
mm_(): 原地矩阵乘法。
bmm_(): 原地批量矩阵乘法。ger_(): 原地外积。
linalg_vector_norm_(): 原地向量范数。
linalg_matrix_norm_(): 原地矩阵范数。
linalg_solve_(): 原地线性求解。
linalg_inv_(): 原地矩阵求逆。
linalg_pinv_(): 原地伪逆。
linalg_eig_(): 原地特征值分解。
linalg_svd_(): 原地奇异值分解。
linalg_householder_product_(): 原地Householder变换。
linalg_qr_(): 原地QR分解。
linalg_triangular_solve_(): 原地三角求解。
linalg_cholesky_(): 原地Cholesky分解。
linalg_symeig_(): 原地对称特征值分解。
linalg_eigvals_(): 原地特征值计算。
linalg_eigvalsh_(): 原地Hermitian特征值计算。
linalg_slogdet_(): 原地对数行列式。
linalg_det_(): 原地行列式。
linalg_cond_(): 原地条件数。
linalg_matrix_rank_(): 原地矩阵秩。
linalg_solve_triangular_(): 原地三角求解。
linalg_lstsq_(): 原地最小二乘求解。
6 - 打印结果和类型:
np_array = np.array(data)
x_np = torch.from_numpy(np_array)print(f"{x_np}\n")
x_np.add_(1)
print(np_array,"\n")n = np.ones(5)
t = torch.from_numpy(n)
np.add(n,1,out=n)
print(f"{t} \n{n}")
- 这里就地展示一下上个小标题的原地计算函数,
add_()是就地操作,它将 1 加到张量x_np的每个元素上。注意,由于x_np和np_array共享内存,np_array也会被修改。我们还一同展示了如何在数组和张量之间进行互相转化。
相关文章:
从PyTorch官方的一篇教程说开去(6.2 - 张量 tensor 矩阵运算等)
您的进步和反馈是我写作最大的动力,小伙伴来个三连呗!共勉~ 话不多说,书接上文,需要温习的小伙伴请移步 - 从PyTorch官方的一篇教程说开去(6.1 - 张量 tensor 基本操作)-CSDN博客 借图镇楼 - 1 - 矩阵乘…...
【网络层】直连路由、静态路由、动态路由
文章目录 路由表直连路由直连路由 技术背景直连路由 实战训练 静态路由静态路由 技术背景静态路由 概述静态路由 配置命令静态路由 实战训练 动态路由动态路由 技术背景路由协议概述路由协议分类 路由表 路由表的形成,路由的来源: 路由来源备注直连路由…...
tkinter用法总结
Tkinter 是 Python 标准库中的一个模块,用于创建图形用户界面 (GUI)。它是 Python 中最常用的 GUI 库之一,因为它集成在 Python 的标准发行版中,无需额外安装即可使用。 一、基本用法 1. 简单示例 import tkinter as tk# 创建主窗口 root …...
iOS基础-Block
系列文章目录 文章目录 系列文章目录一、Block是什么二、Block的使用场景1. 异步操作和完成处理器2. 动画3. 集合操作4. 定时器5. 自定义控件的事件处理6.错误处理 三、Block的底层实现1.结构分析2.Block的类型3.Block的copy4.变量捕捉 四、Block的使用细节1.auto变量的生命周期…...
本地图片瀑布流浏览器asonry Image Viewer
本地图片瀑布流浏览器asonry Image Viewer 前言效果图部分源码领取完整源码下期更新 前言 一款采用 HTML 的瀑布流本地图片浏览器「Masonry Image Viewer」只需要把你的图片文件夹拖到下载的 index 网页文件里面就可以实现瀑布流效果。项目免费开源,据介绍采用了HT…...
macos重装系统 启动U盘制作方法 - createinstallmedia 命令使用方法总结
macos重装系统比windows要稍微复杂一些,不过还好,macos系统安装app这个Apple官方提供的系统软件里面默认就内置了一个可用为我们制作启动盘的工具 createinstallmedia 我们下载的apple安装镜像要门是 dmg/pkg/iso 的压缩档案格式的,要么是 x…...
八问八答搞懂Transformer内部运作原理
最近这一两周看到不少互联网公司都已经开始秋招提前批了。 不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。 最近,我们又陆续整理了很多大厂的面试题,帮助一些球友…...
MySQL增删改查(基础)
1、. 新增(Create) 语法: INSERT [INTO] table_name[(column [, column] ...)] VALUES (value_list) [, (value_list)] ... 例子: -- 创建一张学生表 DROP TABLE IF EXISTS student; CREATE TABLE student (id INT,sn INT com…...
Cairo库移植到安卓记录
前言 接Android Studio引入ndk编译的so库的故事,这个东西搞了两周以后,由于自己不熟悉Java和安卓开发,踩了不少坑,其中一周时间都是花在怎么用Android Studio上的。。。AS下的新版本Koala,结果网上资料全是旧版本&…...
Redis 哈希类型的常用命令总结
1. hset 设置哈希表中字段的值。 hset key field value示例: hset user:1000 name "Alice"2. hget 获取哈希表中字段的值。 hget key field示例: hget user:1000 name3. hgetall 获取哈希表中所有的字段和值。 hgetall key示例&#x…...
【物联网设备端开发】ESP开发工具:QEMU如何模拟以太网口接入网络
以太网口支持 ESP-IDF中添加了对Opencores以太网MAC的支持。 运行以太网示例时,启用CONFIG_EXAMPLE_CONNECT_ETHERNET和 CONFIG_EXAMPLE_USE_OPENETH.。运行自定义应用程序时,启用CONFIG_ETH_USE_OPENETH 并初始化以太网驱动程序,如示例 /c…...
Python学习笔记(四)
# 数据容器分为5类,分别是:列表(list)、元组(tuple)、字符串(str)、集合(set)、字典(dict)""" 演示数据容器之:list列表 语法:[元素ÿ…...
跨域:安全分步实施指南
什么是跨域问题? 跨域(Cross-Origin Resource Sharing,CORS)问题发生在浏览器的同源策略(Same-Origin Policy)限制下。当一个域上的网页试图访问另一个域上的资源时,浏览器会阻止这些操作以保护…...
【iOS】AutoreleasePool自动释放池的实现原理
目录 ARC与MRC项目中的main函数自动释放池autoreleasepool {}实现原理AutoreleasePoolPage总结 objc_autoreleasePoolPush的源码分析autoreleaseNewPageautoreleaseFullPageautoreleaseNoPage autoreleaseFast总结 autorelease方法源码分析objc_autoreleasePoolPop的源码分析po…...
stm32—GPIO
0. 引入 在单片机产品中,我们常常可以见到三种模块:LCD灯、KEY按键、BEEP蜂鸣器 LED灯: 一个比较常见的LED电路LED0 ---------- 通过控制LED0引脚(电线) 给它一个低电平(低电压),LED灯就会亮 给它一个高电平(高电压),LED灯就会灭 …...
CocosCreator使用 ProtoBuf WebSocket与服务器对接方法
在 Cocos Creator 中使用 .proto 文件和转换成 TypeScript(TS)两者各有其优缺点,具体选择取决于你的项目需求和团队的开发习惯。以下是两者的一些比较: 1、使用 .proto 文件的优点: 跨语言支持:Protocol B…...
【python基础】while循环语句练习
明显可以感觉到循环比判断要更加难以理解一些,这个就只能通过练习来提高理解和思维能力了。 学习视频:第一阶段-第四章-05-while循环案例-九九乘法表_哔哩哔哩_bilibili 练习一:计算1-10的和 i1#循环的起始值 sum0 while i&l…...
【SpringBoot系列】WebMvcConfigurer配置
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...
学懂C++ (十九):高级教程——深入详解C++信号处理
目录 C中的信号处理 1. 信号处理的本质 2. 主要信号类型 3. 核心关键点 4. 经典实例 代码分析 5. 进阶:信号屏蔽与多线程 例子:使用sigaction() 6. Windows中的信号处理 7. 比较与总结 示例:Windows控制台事件处理 总结 C中的信号…...
SOMEIP_ETS_032:echoUINT8ArrayMinSize
测试目的: 确保DUT能够正确处理最小尺寸的UINT8数组参数,并且在发送和接收过程中保持参数值和顺序不变。 描述 本测试用例旨在验证DUT在处理包含最小尺寸UINT8数组参数的SOME/IP消息时,是否能够准确地发送和接收这些参数,确保返…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
GraphRAG优化新思路-开源的ROGRAG框架
目前的如微软开源的GraphRAG的工作流程都较为复杂,难以孤立地评估各个组件的贡献,传统的检索方法在处理复杂推理任务时可能不够有效,特别是在需要理解实体间关系或多跳知识的情况下。先说结论,看完后感觉这个框架性能上不会比Grap…...
SQL注入篇-sqlmap的配置和使用
在之前的皮卡丘靶场第五期SQL注入的内容中我们谈到了sqlmap,但是由于很多朋友看不了解命令行格式,所以是纯手动获取数据库信息的 接下来我们就用sqlmap来进行皮卡丘靶场的sql注入学习,链接:https://wwhc.lanzoue.com/ifJY32ybh6vc…...
Vue.js教学第二十一章:vue实战项目二,个人博客搭建
基于 Vue 的个人博客网站搭建 摘要: 随着前端技术的不断发展,Vue 作为一种轻量级、高效的前端框架,为个人博客网站的搭建提供了极大的便利。本文详细介绍了基于 Vue 搭建个人博客网站的全过程,包括项目背景、技术选型、项目架构设计、功能模块实现、性能优化与测试等方面。…...
SpringBoot离线应用的5种实现方式
在当今高度依赖网络的环境中,离线应用的价值日益凸显。无论是在网络不稳定的区域运行的现场系统,还是需要在断网环境下使用的企业内部应用,具备离线工作能力已成为许多应用的必备特性。 本文将介绍基于SpringBoot实现离线应用的5种不同方式。…...
