当前位置: 首页 > news >正文

JVM 收集算法 垃圾收集器 元空间 引用

文章目录

  • JVM 收集算法
    • 标记-清除算法
    • 标记-复制算法
    • 标记-整理算法
  • JVM垃圾收集器
    • Serial收集器
    • ParNew收集器
    • Parallel Scavenge /Parallel Old收集器
    • CMS收集器
    • Garbage First(G1)收集器
  • 元空间
  • 引用
    • 强引用
    • 软引用
    • 弱引用
    • 虚引用


JVM 收集算法

前面我们了解了整个堆内存实际是以分代收集机制为主,但还是没有讲到具体是怎么实现的,那么具体的过程到底是怎么样来实现的呢?我们来了解下

标记-清除算法

在这里插入图片描述
这个回收方法就是首先需要标记出需要回收的对象,然后再依次回收掉被标记的对象,或者是标记出所有不需要回收的对象,只回收未标记的对象
虽然此方法非常简单,但是缺点也是非常明显的,首先如果内存中存在大量的对象,那么可能就会存在大量的标记,并且大规模进行清除。并且一次标记清除之后,连续的内存空间可能会出现许许多多的空隙,碎片化会导致连续内存空间利用率降低.

标记-复制算法

在这里插入图片描述
我们标记算法就是将堆的区域分成两块大小相同放入区域,然后每次只会使用其中一块区域,每当到垃圾回收的时候,将需要回收的对象标记出来,之后将没有标记的复制到另外一边区域,最后将一次清空当前区域,虽然复制浪费了一些时间,但这样能够很好的解决对象大面积回收后造成的碎片化问题
这种算法就非常适用于新生代(因为新生代的回收效率极高,一般不会留下太多的对象)的垃圾回收,而我们之前所说的新生代Survivor区其实就是这个思路,包括8:1:1的比例也正是为了对标记复制算法进行优化而采取的。

标记-整理算法

在这里插入图片描述
上述我们提到了复制算法,此算法在新生区应用完全应用完全没有问题,但如果用在老年区就显得很鸡肋,因为老年区基本都是一些钉子户,它不像新生区那样每次回收都会腾出大量空间,对象,才有机会进入到老年代,所以老年代一般都是些钉子户,可能一次GC后,仍然存留很多对象。而标记复制算法会在GC后完整复制整个区域内容,并且会折损50%的区域,显然这并不适用于老年代。
那么我们能否这样,在标记所有待回收对象之后,不急着去进行回收操作,而是将所有待回收的对象整齐排列在一段内存空间中,而需要回收的对象全部往后丢,这样,前半部分的所有对象都是无需进行回收的,而后半部分直接一次性清除即可。
虽然这样能保证内存空间充分使用,并且也没有标记复制算法那么繁杂,但是缺点也是显而易见的,它的效率比前两者都低。甚至,由于需要修改对象在内存中的位置,此时程序必须要暂停才可以,在极端情况下,可能会导致整个程序发生停顿
所以,我们可以将标记清除算法和标记整理算法混合使用,在内存空间还不是很凌乱的时候,采用标记清除算法其实是没有多大问题的,当内存空间凌乱到一定程度后,我们可以进行一次标记整理算法。


JVM垃圾收集器

Serial收集器

该收集器是比较元老的一个收集器,在较早的jdk,是虚拟机新生代区域收集器的唯一选择,这是一款单线程的垃圾收集器,也就是说,当开始进行垃圾回收的时候,需要暂停所有的线程,直到垃圾收集工作结束,他的新生代收集算法采用的是标记复制法,老年代采用的是标记整理法
在这里插入图片描述

ParNew收集器

这款垃圾收集器相当于是Serial收集器的多线程版本,它能够支持多线程垃圾收集:
在这里插入图片描述
除了多线程支持以外,其他内容基本与Seria收集器一致,并且目前某些JVM默认的服务端模式新生代收集器就是使用的ParNew收集器。

Parallel Scavenge /Parallel Old收集器

Parallel Scavenge同样是一款面向新生代的垃圾收集器,同样采用标记复制算法实现,在JDK6时也推出了其老年代收集器Parallel Old,采用标记整理算法实现:
在这里插入图片描述
与ParNew收集器不同的是,它会自动衡量一个吞吐量,并根据吞吐量来决定每次垃圾回收的时间,这种自适应机制,能够很好地权衡当前机器的性能,根据性能选择最优方案。
目前JDK8采用的就是这种 Parallel Scavenge + Barallel Old的垃圾回收方案。

CMS收集器

在JDK1.5,HotSpot推出了一款在强交互应用中几乎可认为有划时代意义的垃圾收集器:CMS (Concurrent-Mark-Sweep)收集器,这款收集器是HotSpot虚拟机中第一款真正意义上的并发(注意这里的并发和之前的并行是有区别的,并发可以理解为同时运行用户线程和GC线程,而并行可以理解为多条GC线程同时工作)收集器,它第一次实现了让垃圾收集线程与用户线程同时工作。
它主要采用标记清除算法:

在这里插入图片描述

Garbage First(G1)收集器

我们知道,我们的垃圾回收分为Minor GC 、Major GC和Full GC,它们分别对应的是新生代,老年代和整个堆内存的垃圾回收,而G1收集器巧妙地绕过了这些约定,它将整个Java堆划分成2048个大小相同的独立Region 块,每个Region块的大小根据堆空间的实际大小而定,整体被控制在1MB到32MB之间,且都为2的N次幂。所有的Region 大小相同,且在JVM的整个生命周期内不会发生改变。
那么分出这些Region有什么意义呢?每一个Region都可以根据需要,自由决定扮演哪个角色(Eden、Survivor和老年代,收集器会根据对应的角色采用不同的回收策略。此外,G1收集器还存在一个Humongous区域,它专门用于存放大对象(一般认为大小超过了Region容量一半的对象为大对象)这样,新生代、老年代在物理上,不再是一个连续的内存区域,而是到处分布的。

在这里插入图片描述
它的回收过程与CMS大体类似:
在这里插入图片描述
初始化标记:标记出对象能够关联到的对象
并发标记:通过可达性分析,递归整个堆里的对象图,找出要回收的对象
最终标记:对用户线程做一个短暂的暂停,用于处理并发标记阶段漏标的那部分对象。
筛选回收:制定回收计划


元空间

在这里插入图片描述
在JDK8之后,我们堆里面就没有之前的永久代了,随之产生的是一个叫做元空间的东西,类的元信息被存储在元空间中,元空间没有使用堆内存,理论上系统可以使用的内存有多大,元空间就有多大,不会出现永久代存在时的内存溢出问题,永久代就被完完全全的抛弃了
在这里插入图片描述


引用

强引用

在Java中如果变量是一个对象类型,那么它实际上存放的是对象的引用,类似于Object o = new Object()这样的引用类型就是强引用
我们通过前面的学习可以明确,如果方法中存在这样的强引用类型,现在需要回收强引用所指向的对象,那么要么此方法运行结束,要么引用连接断开,否则被引用的对象是无法被判定为可回收的,因为我们说不定后面还要使用它。
所以,当JVM内存空间不足时,JVM宁愿抛出OutOfMlemoryError使程序异常终止,也不会靠随意回收具有强引用的“存活"对象来解决内存不足的问题。
强引用写法: Object o = new Object();

软引用

软引用不像强引用那样不可回收,但一旦JVM内存不足的时候,它会确保抛出异常之前,清理掉软引用指向的对象
软引用写法:SoftReference reference = new SoftReference<>(new Object());

弱引用

弱引用的生命周期比软引用的还要短,在进行垃圾回收的时候,不管当前内存是否充足,都会回收它的内存
弱引用写法
WeakReference reference = new WeakReference<>(new Object());

虚引用

随时可能被回收
也就是说我们无论调用多少次get()方法得到的永远都是null,因为虚引用本身就不算是个引用,相当于这个对象不存在任何引用,并且只能使用带队列的构造方法,以便对象被回收时接到通知。

相关文章:

JVM 收集算法 垃圾收集器 元空间 引用

文章目录JVM 收集算法标记-清除算法标记-复制算法标记-整理算法JVM垃圾收集器Serial收集器ParNew收集器Parallel Scavenge /Parallel Old收集器CMS收集器Garbage First(G1)收集器元空间引用强引用软引用弱引用虚引用JVM 收集算法 前面我们了解了整个堆内存实际是以分代收集机制…...

clip精读

开头部分 1. 要点一 从文章题目来看-目的是&#xff1a;使用文本监督得到一个可以迁移的 视觉系统 2.要点二 之前是 fix-ed 的class 有诸多局限性&#xff0c;所以现在用大量不是精细标注的数据来学将更好&#xff0c;利用的语言多样性。——这个方法在 nlp其实广泛的存在&…...

vue 首次加载慢优化

目前使用的是vue2版本 1.路由懒加载&#xff08;实现按需加载&#xff09; component: resolve > require([/views/physicalDetail/index], resolve)2.gzip压缩插件&#xff08;需要运维nginx配合&#xff09; 第一步&#xff0c;下载compression-webpack-plugin cnpm i c…...

WuThreat身份安全云-TVD每日漏洞情报-2023-03-21

漏洞名称:CairoSVG 文件服务器端请求伪造 漏洞级别:严重 漏洞编号:CVE-2023-27586 相关涉及:CairoSVG 在 2.7.0 版本之前 漏洞状态:POC 参考链接:https://tvd.wuthreat.com/#/listDetail?TVD_IDTVD-2023-06718 漏洞名称:WP Meta SEO WordPress 授权不当导致任意重定向 漏洞级…...

【Android -- 开发工具】Xshell 6 安装和使用教程

一、简介 Xshell 其实就是一个远程终端工具&#xff0c;它可以将你的个人电脑和你在远端的机器连接起来&#xff0c;通过向 Xshell 输入命令然后他通过网络将命令传送给远端Linux机器然后远端的Linux机器将其运行结果通过网络传回个人电脑。 二、Xshell 6 的安装 首先&#…...

国民技术RTC备份寄存器RTC_BKP

根据手册资料知道RTC_BKP的地址&#xff0c;代码如下 #include "main.h" #include "usart.h"void USART2_Configuration(void) {USART_InitType USART_InitStructure;GPIO_InitType GPIO_InitStructure;GPIO_InitStruct(&GPIO_InitStructure);RCC_Ena…...

resnet网络特征提取过程可视化

我们在训练图片时&#xff0c;是不是要看看具体提取时的每个特征图提取的样子&#xff0c;找了很多&#xff0c;终于功夫不负有心人&#xff0c;找到了&#xff0c;通过修改的代码&#xff1a; resnet代码&#xff1a; import torch import torch.nn as nn from torchvision…...

FPGA打砖块游戏设计(有上板照片)VHDL

这是一款经典打砖块游戏,我们的努力让它更精致更好玩,我们将它取名为打砖块游戏(Flyball),以下是该系统的一些基本功能:  画面简约而经典,色彩绚丽而活泼,动画流畅  玩家顺序挑战3个不同难度的级别,趣味十足  计分功能,卡通字母数字  4条生命值,由生命条显示…...

【Unity入门】3D物体

【Unity入门】3D物体 大家好&#xff0c;我是Lampard~~ 欢迎来到Unity入门系列博客&#xff0c;所学知识来自B站阿发老师~感谢 &#xff08;一&#xff09;物体移动旋转缩放 &#xff08;1&#xff09;物体移动 在上一篇文章【Unity入门】场景视图操作我们学会了在场景中创建3…...

网络现代化势在必行,VMware 发布软件定义网络 SD-WAN 全新方案

出品 | CSDN云计算 作为计算存储网络基础设施三大件之一&#xff0c;网络一直是 IT 核心技术&#xff0c;并不断向前发展。 数字化转型浪潮下&#xff0c;各行业都在探索创新应用&#xff0c;而数字化创新&#xff0c;也是对 5G 和云边端等网络基础设施提出更高需求&#xff0c…...

java学习笔记——抽象类

2.1 概述 由来 父类中的方法&#xff0c;被他的子类们重写&#xff0c;子类各自的实现都不尽相同。那么父类的方法声明和方法主体&#xff0c;只有声明还有意义&#xff0c;而方法主体则没有存在的意义了。我们把没有主体的方法称为抽象方法。java语法规定&#xff0c;包含抽象…...

Redis删除策略

删除策略就是针对已过期数据的处理策略。 针对过期数据要进行删除的时候都有哪些删除策略呢&#xff1f; 1.定时删除2.惰性删除3.定期删除1、立即删除 当key设置有过期时间&#xff0c;且过期时间到达时&#xff0c;由定时器任务立即执行对键的删除操作。 优点&#xff1a;节…...

【新星计划2023】SQL SERVER (01) -- 基础知识

【新星计划2023】SQL SERVER -- 基础知识1. Introduction1.1 Official Website1.2 Conn Tool2. 基础命令2.1 建库建表2.2 Alter2.3 Drop2.3 Big Data -- Postgres3.Awakening1. Introduction 1.1 Official Website 官方文档&#xff08;小技巧&#xff09; Officail Website: …...

nginx配置详解

一.nginx常用命令1.Windows(1).查看nginx的版本号nginx -v(2).启动nginxstart nginx(3).快速停止或关闭nginxnginx -s stop(4).正常停止或关闭nginxnginx -s quit(5).配置文件nginx.conf修改重装载命令nginx -s reload2.Linux(1).进入 nginx 目录中cd /usr/local/nginx/sbin(2)…...

关于Java中堆和栈的学习

文章目录1.概述1.1 堆1.2 栈2.堆内存2.1 什么是堆内存?2.2堆内存的特点是什么?2.3new对象在堆中如何分配?3.栈内存3.1什么是栈内存?3.2栈内存的特点3.3栈内存的内存分配机制3.4数据共享4.栈与堆的区别4.1差异4.2相同5. 面试题: java堆和栈的区别**申请方式****申请后系统的…...

ORBSLAM3 --- 闭环及地图融合线程

目录 1.闭环及地图合并线程的目的和意义 2.闭环及地图合并流程 3.ORBSLAM3中的闭环与地图融合线程解...

libvirt零知识学习6 —— libvirt源码编译安装(4)

接前一篇文章libvirt零知识学习5 —— libvirt源码编译安装&#xff08;3&#xff09; 上一篇文章中解决了YAJL包的编译时依赖问题。但是在解决后再次执行meson build时又遇到了新的错误“ERROR: Program rst2html5 rst2html5.py rst2html5-3 not found or not executable”。本…...

数据仓库相关面试题

1.请介绍一下星型模型和雪花模型的区别及适用场景。 星型模型和雪花模型是数据仓库中常见的两种数据建模方式。 星型模型是由一个中心事实表和多个与之相关的维度表构成的&#xff0c;维度表通常只有一层&#xff0c;每个维度表只关联一个事实表。在星型模型中&#xff0c;事实…...

2023年PMP考试前两个月开始备考时间足够吗?

够了&#xff0c;PMP真的不难&#xff0c;目前的考试都只有选择题&#xff0c;往后可能会增加别的题型&#xff0c; PMP新版大纲加入了ACP敏捷管理的内容&#xff0c;而且还不少&#xff0c;敏捷混合题型占到了 50%&#xff0c;2023年8月将启用第七版《PMBOK》&#xff0c;大家…...

56 | fstab开机挂载

1 fstab的参数解析 【file system】【mount point】【type】【options】【dump】【pass】 其中&#xff1a; file systems&#xff1a;要挂载的分区或存储设备。 mount point&#xff1a;file systems 的挂载位置。 type&#xff1a;要挂载设备或是分区的文件系统类型&…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...