当前位置: 首页 > news >正文

C++之类与对象(完结撒花篇)

目录

前言

1.再探构造函数

2.类型转换

3.static成员

4. 友元

5.内部类

6.匿名对象

7.对象拷贝时的编译器优化

结束语



前言

在前面的博客中,我们对类的默认成员函数都有了一定了解,同时实现了一个日期类对所学的没内容进行扩展延伸,本节我们将对类与对象进行大致的最终学习。

1.再探构造函数

• 之前实现构造函数时,初始化成员变量 主要使用函数体内赋值,构造函数初始化 还有一种方式,就是初始化列表,初始化列表的使用方式是以一个冒号开始,接着是一个以逗号分隔的数据成员列表,每个"成员变量"后面跟一个放在括号中的初始值或表达式。
• 每个成员变量在初始化列表中 只能出现一次,语法理解上初始化列表可以认为是每个成员变量定义初始化的地方。
• 引用成员变量,const成员变量,没有默认构造的类类型变量,必须放在初始化列表位置进行初始化,否则会编译报错。
#include <iostream>
using namespace std;
class Time {
public:Time(int hour=1): _hour(hour) {cout << "Time()" << endl;}
private:int _hour;
};
class Date {
public:Date(int &x,int year = 1, int month = 1, int day = 1):_year(year), _month(month), _day(day), _t(12),_ref(x),_n(1) {// error C2512: “Time”: 没有合适的默认构造函数可⽤
// error C2530 : “Date::_ref” : 必须初始化引⽤
// error C2789 : “Date::_n” : 必须初始化常量限定类型的对象
}void Print() const{cout << _year << "-" << _month << "-" << _day << endl;}
private:int _year;int _month;int _day;Time _t; // 没有默认构造int& _ref; // 引⽤const int _n; // const};
int main() {int x = 1;Date d1(x);d1.Print();return 0;
}

上述代码是修改后的正确代码展示

• C++11支持在成员变量声明的位置给缺省值,这个缺省值主要是给没有显⽰在初始化列表初始化的成员使用的。
尽量使用初始化列表初始化,因为那些不在初始化列表初始化的成员也会走初始化列表,如果这个成员在声明位置给了缺省值,初始化列表会用这个缺省值初始化。如果你没有给缺省值,对于没有显示在初始化列表初始化的内置类型成员是否初始化取决于编译器,C++并没有规定。对于没有显示在初始化列表初始化的自定义类型成员会调用这个成员类型的默认构造函数,如果没有默认构造会编译错误。
• 初始化列表中按照成员变量在类中声明顺序进行初始化,跟成员在初始化列表出现的的先后顺序无关。建议声明顺序和初始化列表顺序保持一致。
#include<iostream>
using namespace std;
class Time
{
public:Time(int hour):_hour(hour){cout << "Time()" << endl;}
private:int _hour;
};
class Date
{
public:Date():_month(2){cout << "Date()" << endl;}void Print() const{cout << _year << "-" << _month << "-" << _day << endl;}
private:// 注意这⾥不是初始化,这⾥给的是缺省值,这个缺省值是给初始化列表的// 如果初始化列表没有显⽰初始化,默认就会⽤这个缺省值初始化int _year = 1;int _month = 1;int _day;Time _t = 1;const int _n = 1;int* _ptr = (int*)malloc(12);
};
int main()
{//对象定义Date d1;d1.Print();return 0;
}
a9476e5b17574f9ca1d739ff35375ec8.png

 补充题目

下面程序的运行结果是什么(D)
A. 输出 1 1     B. 输出 2 2     C. 编译报错
D. 输出 1 随机值     E. 输出 1 2    F. 输出 2 1
#include<iostream>
using namespace std;
class A
{
public:A(int a):_a1(a), _a2(_a1){}void Print() {cout << _a1 << " " << _a2 << endl;}
private:int _a2 = 2;int _a1 = 2;
};
int main()
{A aa(1);aa.Print();
}

b66642d82e22404f8ddeaf49c8e6d888.png

_a2_a1 的初始化顺序不符合它们在类中声明的顺序。这将导致 _a2 使用未初始化的 _a1 值,所以输出的_a2是个随机值

2.类型转换

C++ 支持内置类型(如 intfloat 等)隐式转换为类类型对象,只要类中定义了一个接受该内置类型作为参数的构造函数。这种构造函数通常称为单参数构造函数,能够允许编译器在需要时自动创建对象。

#include <iostream>
using namespace std;class MyClass {
public:// 单参数构造函数,接受一个 int 类型MyClass(int value) : _value(value) {cout << "MyClass constructed with value: " << _value << endl;}void Print() const {cout << "Value: " << _value << endl;}private:int _value;
};int main() {MyClass obj = 10; // 隐式转换,从 int 到 MyClassobj.Print(); // 输出: Value: 10MyClass anotherObj(20); // 显式构造anotherObj.Print(); // 输出: Value: 20return 0;
}

 5374931f75674d39abe366128c6f9c21.png

注意事项

  • 隐式转换的风险:

    • 尽管隐式转换很方便,但可能会导致代码的可读性降低,尤其是在较大的代码库中。为了避免不必要的隐式转换,可以将构造函数声明为 explicit,防止不小心的隐式转换:

class MyClass {

public:

explicit MyClass(int value)

: _value(value) {}

// ...

};

  • 多重构造:

    • 如果类中有多个构造函数,确保它们能够明确区分,以避免二义性的问题。

3.static成员

• 用 static修饰的成员变量,称之为静态成员变量,静态成员变量一定要在类外进行初始化。
• 静态成员变量为 所有类对象所共享,不属于某个具体的对象,不存在对象中,存放在静态区。
• 用static修饰的成员函数,称之为静态成员函数,静态成员函数没有this指针。
• 静态成员函数中可以访问其他的静态成员,但是不能访问非静态的,因为没有this指针。
• 非静态的成员函数,可以访问任意的静态成员变量和静态成员函数。
• 突破类域就可以访问静态成员,可以通过类名::静态成员 或者 对象.静态成员 来访问静态成员变量和静态成员函数。
• 静态成员也是类的成员,受public、protected、private 访问限定符的限制。
• 静态成员变量 不能在声明位置给缺省值初始化,因为缺省值是个构造函数初始化列表的,静态成员变量不属于某个对象,不走构造函数初始化列表。

#include <iostream>
using namespace std;
class A {
public:A() {++_count;}A(const A& count) {++_count;}~A() {--_count;}static int getcount() {return _count;}
private://类里面声明static int _count;
};
int A::_count = 520;
int main() {cout << A::getcount() << endl; // 输出:520A t1; // _count 增加到 521A t2(t1); // _count 增加到 522cout << A::getcount() << endl; // 输出:522// 此时 t1 和 t2 仍然存在cout << t1.getcount() << endl;//522cout << t2.getcount() << endl;//522{A t3(t1); // _count 增加到 523cout << A::getcount() << endl; // 输出:523} // t3 超出作用域, _count 减少到 522cout << A::getcount() << endl; // 输出:522return 0;
}

题目练习

设已经有A,B,C,D 4个类的定义,程序中A,B,C,D构造函数调⽤顺序为?(E)
设已经有A,B,C,D 4个类的定义,程序中A,B,C,D析构函数调⽤顺序为?(B)
C c;
int main() {
A a;
B b;
static D d;
return 0;
}
A:D B A C             B:B A D C            C:C D B A
D:A B D C             E:C A B D            F:C D A B

在全局或局部作用域中,构造函数的调用顺序如下:

  1. 全局和静态对象的构造:在程序启动时,全局对象(如果有)和静态对象会首先被构造。
  2. 局部对象的构造:然后,当程序进入 main() 函数时,局部对象的构造按定义顺序调用。

析构函数的调用顺序与构造函数的顺序相反。析构函数会在对象的生命周期结束时被调用,顺序如下:

  1. 局部对象的析构:当程序退出 main() 函数时,局部对象按定义的相反顺序析构。
  2. 全局和静态对象的析构:在 main() 函数结束后,全局对象和静态对象会被析构。

4. 友元

• 友元提供了一种突破类访问限定符封装的方式,友元分为: 友元函数和友元类,在函数声明或者类声明的前面 加friend,并且把友元声明放到一个类的里面。
• 外部友元函数可访问类的私有和保护成员,友元函数仅仅是一种声明,他不是类的成员函数。
• 友元函数可以在类定义的任何地方声明,不受类访问限定符限制。
一个函数可以是多个类的友元函数
友元类中的成员函数都可以是另一个类的友元函数,都可以访问另一个类中的私有和保护成员。
• 友元类的关系是单向的,不具有交换性,比如A类是B类的友元,但是B类不是A类的友元。
友元类关系不能传递,如果A是B的友元, B是C的友元,但是A不是B的友元。
• 有时提供了便利。但是友元会增加耦合度,破坏了封装,所以友元不宜多用。

#include <iostream>
using namespace std;class B;//前置声明
class A {friend void func(const A& a, const B& b);
private:int _a = 520;int _b = 1314;
};
class B {friend void func(const A& a, const B& b);
private:int _a = 1314;int _b = 520;
};
void func(const A& a, const B& b) {cout << a._a << endl;cout << b._b << endl;
}int main() {A a;B b;func(a, b);return 0;
}

a033ffeedee247a1af5d55fa60ccbace.png

#include<iostream>
using namespace std;
class A
{// 友元声明friend class B;
private:int _a1 = 520;int _a2 = 1314;
};
class B
{
public:void func1(const A& aa){cout << aa._a1 << endl;cout << _b2 << endl;}void func2(const A& aa){cout << aa._a2 << endl;cout << _b1 << endl;}
private:int _b1 = 520;int _b2 = 1314;
};
int main()
{A aa;B bb;bb.func1(aa);bb.func2(aa);return 0;
}

5.内部类

• 如果一个类定义在另一个类的内部,这个内部类就叫做内部类。内部类是一个独立的类,跟定义在全局相比,他只是受外部类类域限制和访问限定符限制,所以外部类定义的对象中不包含内部类。
内部类默认是外部类的友元类
• 内部类本质也是一种封装,当A类跟B类紧密关联,A类实现出来主要就是给B类使用,那么可以考虑把A类设计为B的内部类, 如果放到private/protected位置,那么A类就是B类的专属内部类,其他地方都用不了。
#include <iostream>
using namespace std;class A {
private:static int _a; // 静态成员int _b;        // 非静态成员
public:class B {public:void print(const A& a) {cout << _a << endl;   // 访问静态成员cout << a._b << endl; // 访问非静态成员}};
};int A::_a = 520; // 静态成员初始化int main() {cout << "A类的大小:" << sizeof(A) << endl; // 输出 A 类的大小A::B b; // 创建 B 类的对象A aa;   // 创建 A 类的对象b.print(aa); // 调用 print 函数return 0;
}

24af069dc4504e63b7038df3585add7e.png

6.匿名对象

用类型(实参) 定义出来的对象叫做匿名对象,相比之前我们定义的 类型 对象名(实参) 定义出来的 叫有名对象
匿名对象生命周期只在当前一行,一般临时定义一个对象当前用一下即可,就可以定义匿名对象。
#include <iostream>
using namespace std;
class A
{
public:A(int a = 0):_a(a){cout << "A(int a)" << endl;}~A(){cout << "~A()" << endl;}private:int _a;
};class Solution {
public:int Sum_Solution(int n) {//...return n;}
};bool myfunction(int i, int j) { return (i > j); }int main()
{A aa1;  //有名对象// 不能这么定义对象,因为编译器无法识别下面是一个函数声明,还是对象定义//A aa2();// 生命周期只在当前一行A(); // 匿名对象A(1);Solution st;cout << st.Sum_Solution(10) << endl;// 为了更方便cout << Solution().Sum_Solution(10) << endl;return 0;
}

7e27414ec1e04d3489a22e383ed1adc0.png

7.对象拷贝时的编译器优化

• 现代编译器会为了尽可能提高程序的效率,在不影响正确性的情况下会尽可能减少一些传参和传参过程中可以省略的拷贝。
• 如何优化C++标准并没有严格规定,各个编译器会根据情况自行处理。当前主流的相对新一点的编译器对于连续一个表达式步骤中的连续拷贝会进行合并优化,有些更新更"激进"的编译还会进行跨行跨表达式的合并优化。
#include <iostream>
using namespace std;
class A {
public:A(int a=0):_a(a){cout << "A(int a)" << endl;}A(const A& aa) :_a(aa._a){cout << "A(const A& aa) " << endl;}A& operator=(const A& aa){cout << "A& operator=(const A& aa)" << endl;if (this != &aa){_a = aa._a;}return *this;}~A() {cout << "~A()" << endl;}void Print(){cout << "A::Print->" << _a << endl;}A& operator++(){_a += 100;return *this;}
private:int _a ;
};
void f1(A aa)
{}
A f2()
{A aa(1);++aa;cout << "##########" << endl;return aa;
}
int main() {A aa1 ;aa1.Print();//const A& aa2 = 2;//A aa3(aa2);//A aa1;//f1(aa1);//cout << endl;// 隐式类型,连续构造+拷⻉构造->优化为直接构造//f1(1);// ⼀个表达式中,连续构造+拷⻉构造->优化为⼀个构造//f1(A(2));//cout << endl;//cout << "***********************************************" << endl;// 传值返回// 返回时⼀个表达式中,连续拷⻉构造+拷⻉构造->优化⼀个拷⻉构造 (vs2019)// ⼀些编译器会优化得更厉害,进⾏跨⾏合并优化,直接变为构造。(vs2022)//f2();//cout << endl;// 返回时⼀个表达式中,连续拷⻉构造+拷⻉构造->优化⼀个拷⻉构造 (vs2019)// ⼀些编译器会优化得更厉害,进⾏跨⾏合并优化,直接变为构造。(vs2022)// A aa2 = f2();// cout << endl;// ⼀个表达式中,连续拷⻉构造+赋值重载->⽆法优化aa1 = f2();cout << endl;A ret = f2();ret.Print();cout << "*********" << endl << endl;//return 0;}

结束语

本节内容到此结束,类与对象的学习也暂时告别一段落了,希望接下来继续能和大家探讨C++的学习,最后呢,感谢各位友友的支持,讲解不足之处也希望大家多多包涵!!! 

相关文章:

C++之类与对象(完结撒花篇)

目录 前言 1.再探构造函数 2.类型转换 3.static成员 4. 友元 5.内部类 6.匿名对象 7.对象拷贝时的编译器优化 结束语 前言 在前面的博客中&#xff0c;我们对类的默认成员函数都有了一定了解&#xff0c;同时实现了一个日期类对所学的没内容进行扩展延伸&#xff0c;本…...

代码质量的守护者:Python静态代码分析工具的集成之道

标题&#xff1a;代码质量的守护者&#xff1a;Python静态代码分析工具的集成之道 在软件开发过程中&#xff0c;代码质量是至关重要的一环。Python作为一种流行的编程语言&#xff0c;拥有众多的静态代码分析工具&#xff0c;它们能够在代码运行之前检测潜在的错误和代码风格…...

JVM -- 类加载器

类加载器(ClassLoader)是Java虚拟机提供给应用程序去实现访问接口和类字节码数据的技术。类加载器只负责加载过程中的字节码获取并加载到内存的这一过程。 一、 类加载器的分类 类加载器的详细信息可以使用Arthas通过classloader命令查看&#xff1a; 1.启动类加载器(Boots…...

OLAP引擎之StarRocks

StarRocks 是一款新兴的开源分布式实时分析型数据库&#xff0c;专为高性能、高并发的数据分析场景设计。它结合了传统数据仓库和大数据技术的优势&#xff0c;提供了强大的实时数据处理和分析能力。以下是对 StarRocks 的详细介绍&#xff0c;涵盖其基本概念、核心特性、架构设…...

基于微信小程序的小区业主服务系统(源码+论文+部署讲解等)

博主介绍&#xff1a;✌全网粉丝10W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌ 技术栈介绍&#xff1a;我是程序员阿龙&#xff…...

C++ | Leetcode C++题解之第327题区间和的个数

题目&#xff1a; 题解&#xff1a; class Solution { public:int countRangeSumRecursive(vector<long>& sum, int lower, int upper, int left, int right) {if (left right) {return 0;} else {int mid (left right) / 2;int n1 countRangeSumRecursive(sum,…...

C# Winform 多窗体切换方式一

一、简介 在 Winform 开发中&#xff0c;多窗体的切换是一个常见的需求&#xff0c;比如登录成功后&#xff0c;切换至主界面&#xff0c;在网上查阅相关的资料&#xff0c;你会发现很多都是用 form2.Show(); this.Hide(); 这种方式&#xff0c;这种方式也存在一些问题&#…...

笔记本CPU天梯图(2024年8月),含AMD/骁龙等新CPU

原文地址&#xff08;高清无水印原图/持续更新/含榜单出处链接&#xff09;&#xff1a; 2024年8月笔记本CPU天梯图 2024年8月笔记本CPU天梯图 2024年8月5日更新日志&#xff1a;常规更新Cinebench R23、PassMark笔记本CPU天梯图&#xff0c;新增Geekbench 6.2单核多核天梯图&…...

GitLab-CI/CD指南

由于公司没有运维&#xff0c;写go服务时各个环境编译部署还是略显麻烦&#xff0c;由于代码管理使用的是 gitlab&#xff0c;所以决定使用 gitlab 自带的 CI/CD 来做自动编译和部署&#xff0c;这样每次提交代码以后就可以自动部署到服务器上了。 gitlab 本身只有 CI/CD 的接…...

io目录操作学习

1、基本概念 目录也是一种文件&#xff0c;因此操作流程与普通文件类似&#xff0c;有诸如打开、关闭、定位等概念&#xff0c;但目录是一种特殊的文件&#xff0c;目录存储的数据的最小单位并不是字符&#xff0c;而是目录项。这使得目录跟普通文件又有区别。 在Linux中&…...

Ant-Design-Vue

Ant-Design-Vue是蚂蚁金服Ant Design官方推荐的Vue版UI组件库&#xff0c;它继承了Ant Design的设计语言和Vue.js的易用性&#xff0c;为开发者提供了丰富、高质量的Vue组件&#xff0c;极大地简化了前端开发流程。以下是一份详细的Ant-Design-Vue快速上手指南及排坑建议&#…...

2024互联网暑期实习面经和流程记录分享

2024互联网暑期实习面经和流程记录分享 面试经验和流程需要注意的点 面试经验和流程 因为敏感信息的原因&#xff0c;这里涉及到公司名字的全部进行打码 笔者投递和面试了很多公司&#xff0c;具体有包括算法和开发岗&#xff0c;下面的公司一律用字母代替。 O公司&#xff0…...

风云崛起之拉氏变换和拉式逆变换

图像的分割写出来了&#xff0c;但是写的不好&#xff0c;暂时先不发了。这两天小y想在把拉式变换的内容写出来&#xff0c;小y最近再看信号和电路&#xff0c;需要复习数学&#xff0c;所以把这点写出来。 首先要推出分布积分的公式&#xff0c;我们知道积分和微分为逆运算&am…...

1、.Net UI框架:WinUI - .Net宣传系列文章

WinUI(Windows UI Library)是微软提供的一个用于构建Windows应用程序的本机UI平台组件。它与Windows应用SDK紧密相关&#xff0c;允许开发者创建适用于Windows 10及更高版本的应用程序&#xff0c;并且可以发布到Microsoft Store。WinUI 3是最新的一代&#xff0c;它提供了与操…...

计算机的错误计算(五十九)

摘要 讨论用 Go语言实现的 函数的计算精度问题。 由计算机的错误计算&#xff08;五十五&#xff09;知&#xff0c;国际 IEEE 754 标准中&#xff0c; 函数具有定义域 . 那么&#xff0c;在常规编程模式下用 Go语言实现这个函数&#xff0c;其输出的精度如何&#xff1f; …...

【数学分析笔记】第1章第1节:集合(1)

作为一个计算机专业的人&#xff0c;想自学一下数学专业的专业课补一补AI基础&#xff0c;顺带写个笔记&#xff0c;听的课是陈纪修版本的数学分析&#xff1a; 1. 集合与映射 1.1 集合 1.1.1 基本概念 集合&#xff1a;由某种特定性质的具体的或抽象的对象汇集的总体。 集…...

计算机毕业设计 校园失物招领网站 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…...

GIT指令大全详解

目录 GIT指令详解 拉取 提交 分支操作(假设分支为a) 版本回退 主分支拉取到分支 常用的Git指令 一、初始化配置 二、初始化仓库 三、检查当前文件状态 四、添加 五、查看提交历史 六、撤销更改 七、查询 八、分支 九、标签管理 十、其他常用指令 GIT指令详解 Git是一个开源的分…...

ECCV2024,清华百度提出ReSyncer:可实现音频同步嘴唇动作视频生成。

清华&百度等联合提出了ReSyncer&#xff0c;可以实现更高稳定性和质量的口型同步&#xff0c;而且还支持创建虚拟表演者所必需的各种有趣属性&#xff0c;包括快速个性化微调、视频驱动的口型同步、说话风格的转换&#xff0c;甚至换脸。 ReSyncer的工作原理可以简单理解为…...

论文笔记:YOLOv8-QSD 自动驾驶场景小目标检测算法

摘要 YOLOv8-QSD网络是一种新型的无锚点驾驶场景检测网络&#xff0c;建立在YOLOv8的基础上&#xff0c;在保证检测精度的同时保持效率。该网络的骨干网采用结构重参数化技术来转换基于多样化分支块 &#xff08;DBB&#xff09; 的模型。 为了准确检测小目标&#xff0c;它集…...

Vue.js状态管理:Vuex与Pinia的比较

在 Vue.js 生态系统中&#xff0c;状态管理是构建复杂应用时的重要组成部分。Vue.js 提供了两种流行的状态管理库&#xff1a;Vuex 和 Pinia。虽然两者都旨在简化状态管理&#xff0c;但它们在设计哲学、API、性能和易用性方面有所不同。本文将深入探讨 Vuex 和 Pinia 的异同&a…...

OJ题目【栈和队列】

目录 有效的括号 有效的括号【代码】 用队列实现栈 用队列实现栈【代码】 用栈实现队列 用栈实现队列【代码】 设计循环队列 有效的括号 https://leetcode.cn/problems/valid-parentheses/submissions/551394950/ 思路&#xff1a;把左括号放到栈里&#xff0c;取出来栈…...

[shell][git]git将当前分支的HEAD指针重置到最后一次提交的状态

在Git中&#xff0c;git reset --hard HEAD 命令用于将当前分支的HEAD指针重置到最后一次提交的状态&#xff0c;并且会丢弃当前工作目录中的所有更改。这个命令的意思是&#xff1a; git reset&#xff1a;重置命令&#xff0c;用于将HEAD指针移动到指定的状态。--hard&#…...

高翔【自动驾驶与机器人中的SLAM技术】学习笔记(六)卡尔曼滤波器二:图解卡尔曼滤波器;卡尔曼滤波器公式理解;面试答法;

上一篇卡尔曼滤波器一中,从整体上认识了,卡尔曼滤波器整体是在做一件什么事。 知道了,协方差就可以理解为偏差,或者误差。 这一篇主要讲卡尔曼滤波器中的公式,理解公式,就能知道如何实现卡尔曼滤波器。 上一篇:卡尔曼滤波器在做一件什么事,这一篇,卡尔曼滤波器怎么…...

高性能日志系统 日志输出模块逻辑

概述 该模块主要实现了一个日志系统的输出模块&#xff0c;通过多态、工厂模式等设计模式&#xff0c;构建灵活的日志输出架构。 功能&#xff1a;格式化完成的标准日志消息&#xff0c;输出到指定为止拓展&#xff1a;支持同时将日志落地到不同的位置&#xff0c;也就是输出日…...

haproxy基础

目录 1 HAProxy介绍 1.1 版本对比 1.2 HAProxy功能 2 参数介绍与实践 2.1 global参数说明 2.2 真实代码格式实例 2.3 常用全局参数 2.3.1 nbproc -- 开启几个进程 2.3.2 cpu-map(CUP绑定) 2.3.3 nbthread 2 --开启2个线程 3 Proxies配置 3.1 Proxies配置-defaults 3.2 Proxi…...

C++ 面试题常用总结 详解(满足c++ 岗位必备,不定时更新)

&#x1f4da; 本文主要总结了一些常见的C面试题&#xff0c;主要涉及到语法基础、STL标准库、内存相关、类相关和其他辅助技能&#xff0c;掌握这些内容&#xff0c;基本上就满足C的岗位技能&#xff08;红色标记为重点内容&#xff09;&#xff0c;欢迎大家前来学习指正&…...

LVS实验——部署DR模式集群

目录 一、实验环境 二、配置 1、LVS 2、router 3、client 4、RS 三、配置策略 四、测试 1.Director服务器采用双IP桥接网络&#xff0c;一个是VPP&#xff0c;一个DIP 2.Web服务器采用和DIP相同的网段和Director连接 3.每个Web服务器配置VIP 4.每个web服务器可以出外网…...

pythonUI自动化008::allure测试报告(安装及应用)

allure报告预览 1 下载jdk&#xff0c;配置jdk Path变量&#xff1a; https://www.cnblogs.com/FBGG/p/15103119.html&#xff08;这里不作阐述&#xff0c;请看该偏文章配置即可&#xff09; 2 下载allure驱动&#xff0c;配置allure Path变量&#xff1a; 下载allure驱动&a…...

常用的 git 和 linux 命令有哪些?

对于 Git 命令&#xff1a; 1. git init&#xff1a;初始化一个新的 Git 仓库。 2. git clone&#xff1a;克隆一个远程仓库到本地。 3. git add&#xff1a;将文件添加到暂存区。 4. git commit&#xff1a;提交暂存区的更改。 5. git status&#xff1a;查看工作区和暂存…...