当前位置: 首页 > news >正文

Apache Flink中TaskManager,SubTask,TaskSlot,并行度之间的关系

Apache Flink 中Application 与 Job
  • 一个完整的Flink Application 一般组成如下:
    • Source 数据来源
    • Transformation 数据转换处理等
    • Sink 数据传输
  • Flink 中一个或者多个Operator(算子)组合对数据进行转换形成一个 Transformation,一个FlinkApplication开始于一个或者多个Source,结束于一个或者多个Sink
DataFlow数据流图
  • 一个Flink Job执行时候会按照Source,Transformation,Sink顺序执行,形成了一个Stream DataFlow(数据流图),数据流图是个整体展示Flink作业执行流程的高级试图。

在这里插入图片描述

SubTask子任务与并行度
  • 集群中运行Flink代码本质上就是以为并行度方式来执行,这样可以提高处理数据的吞吐量和速度。
  • 当一个Flink中有多个Operator,每个Operator有多个Subtask(子任务),不同的Operator的Subtask个数可以不一样,一个Operator有几个SubTask就代当前算子的并行度(Parallelism)是多少,Subtask在不同现场,不同物理机器或者不同容器中完全独立执行。

在这里插入图片描述

  • 以上图是DataFlow视图,下半部分是并行度DataFlow视图,Source,Map,keyBy等操作都是 2个并行度,对应有2个subtask分布式执行,Sink操作并行度1,只有一个subtask,一共是7个subTask,
  • 一个Flink Application 的并行度通常任务是所有Operator中最大的并行执行能力,以上最大2个并行度
  • 并行度设置有三种方法:
    • Operator Level(算子层面):编码的方式xxx.setparallelism(2)。当前算子有效
    • Eecution Environment Level(执行环境层面):env.setparallelism() 全局代码有效
    • Client Level(客户端层面):在Web UI上之间配置
    • System Level(系统层面):通过yaml文件配置:parallenlism.default :5
Operator Chains 算子链
  • Flink作业中,可以指定Operator Chains(算子链)将相关性非常强的算子操作绑定在一起,这样能够让转换过程上下游的Task数据处理逻辑由一个Task执行,避免因为数据在网络或者线程之间传输导致的开销,减少数据处理延迟提高数据吞吐量。
  • 如下案例,下图流程处理程序Source/map 就形成了一个算子链,keyBy/window/apply新城了算子链,分布式执行中原本需要多个task执行的操作由于存在算子链,我们可以用一SubTask分不少执行即可。

在这里插入图片描述

  • Flink中哪些操作可以合并一起?这主要取决于算子之间的并行度与算子数据之间传递的模式。

  • 一个数据流在算子之间传递数据可以是一对一(One-to-One)的模式传递

  • 也可以是重新分区(Redistributing)的模式传递,两个有区别

    • One-to-one:一对一模式例如上图中source 和Map()算子之间,保留了原宿的分区和顺序,这样处理流程是map()算子的subTask[1]处理的数据全部都是来自source的task[1] 产生的数据,并且顺序保持一致,例如 map。fllter,flatMap这些算子操作都是One-to-One数据传递模式
    • Redistributing:重新分区模式(如上面的mao 和keyBy/window之间,以及keyBy/window和Sink之间),改变了流的分区,这种情况下数据流向的分区变化了。每个算子的subtask将数据发送到不同的目标subtask,这取决于使用了什么样的算子操作,例如keyBy()是分组操作,会根据key的hash值重新分区投递,再比如,window/apply 算子操作的并行度是2,流向了并行度1的sink操作,这个过程需要通过rebalance操作将数据均匀发送到下游Subtsk中,这些都是重新分区了。
  • Flink 中 One-to-One的算子操作并行度一致,默认自动合并在一起形成一个算子链,

Fllink 执行图
  • Flink 代码提交到集群执行,最终转成task分不少的在各个节点上运行,以下我们用DataFlow的形式展示Flink中Task提交执行流程。

在这里插入图片描述

  • 客户端会按照transformation转成StreamGraph(任务流图)
  • StreamGraph按照Operator Chains 算子链和规则转换成JobGraph(作业图)在JobGraph中将并行度相同且数据流转关系位One-to-One关系的算子合并在一个task处理原来需要两个task处理的逻辑,
  • JobGraph会被提交给jobManager,最终由jobManager中的JobMaster转换成ExecutionGraph)(执行图)
  • ExecutionGraph中按照每个算子并行度来划分对应的SubTask,每个SubTask最终再次被转换成其他可以部署的对象发送到TaskManager上执行。
  • 以上整个流程是Flink任务的底层执行转换流程,基于以上流程有如下结论:
    • 在Flink中一个Task一般对应的就是一个算子或者多个算子逻辑,多个算子逻辑经过Operator Chains优化后也是由一个Task执行
    • Flink分不少运行中,Task会按照并行度划分成多个SubTask。每个SubTask由一个Thread新城执行,多个SubTask分布在不同现场不同节点形成Fllink分布式的执行。
    • SubTask是Flink任务调度的基本单元
TaskSlot任务槽
  • 提交到集群中的Flink程序最终都会换成一个一个的SubTask,SubTask是Flink任务调度的基本单元,这些task最终发送到不同taskmanager节点上分布式执行
TaskSlot任务槽
  • Flink集群中每一个TaskManager是一个JVM进程,可以在TaskManager中执行一个或者多个Subtask,为了控制Taskmanager中接受的Task数量,TaskManager节点上可以提供TaskSlot(任务槽),一个TaskManger上可以划分多个TaskSlot,TaskSlot是Flink系统中资源调度的最小单元,可以对TaskManager上资源进行划分,每个taskSlot可以运行一个或者多个subtask,每个jobManager上至少有一个taskSlot。

在这里插入图片描述

  • 以上,每个taskSlot都有固定资源,假设一个TaskManager有三个TaskSlots,那么每个TaskSlot将会平均分TaskManger的内存,那么subtask不会与其他subtask竞争内存,taskslot作用就是分离任务的托管内存,但是不会发生CPU的隔离

  • 通过调整taskSlot数量,用户可以指定每一个taskManager油多少taskSlot,

    • 可以单个,这样就独占当前JobManager的JVM
    • 多个taskSlot就有多个subTask共享同一个JVM,同一个JVM中task共享TCP连接和心跳信息,共享数据集和数据结构,从而减少Taskmanager中的task开销。
  • Flink 可以配置jobManager的taskSlot数量,来决定每个TaskManager上可以执行多个subTask,由于TaskSLot只会对内存进行隔离,不对CPU进行隔离,建议线上配置 taskSlot的📄设置和该Taskmanager节点CPU CORE 的数量保持一致

TaskSlot 共享 & SlotSharingGroup共享组
  • 默认情况Flink允许共享taskSlot,即便他们是不同subTask,只要是同一个Flink作业即可,结果就是一个SLot可以持有整个作业的管道

在这里插入图片描述

  • Flink中共享taskSlot 解决的问题:

  • 我们在提交Flink应用程序时需 要关注我们程序中到底有多少subtask,然后再衡量Flink集群中slot个数是否足够,在一定程序上需 要的slot资源较多。另外一个方面是在Flink中运行的task对CPU资源的占用不同,有CUP密集型task 操作和CPU非密集型task操作情况,例如在Flink集群中source和map操作只是读数据后转换,对CPU占用短,但是window这种穿口计算聚合操作设计大量数据计算,占用CPU资源长,这就导致运行时候source/map,sink操作非常快,window操作时间长,source/map对应的subtask会等待window对应的subtask执行,同样sink的对应的
    subtask也会等待window对应的subtask执行,站在集群slot角度上来看就出现了一些taskslot非常" 繁忙",一些taskslot非常"轻松",集群的资源综合利用不高

  • taskslot共享就可以很好地解决以上问题,Flink任务所有的subtask均衡的分散到不同的taskslot上 执行,一个taskslot贯穿执行整个流程的subtask,这样每个taskslot、每个TaskManager上的资源 使用情况非常均衡。所以允许 slot 共享有两个主要优点:

    • Flink集群所需要的taskSlot和作业中使用的最大并行度恰好一样,不需要关注Flink程序总共包含多少个subTask
    • 容易获取更好的资源利用,如果没有slot共享,非密集型subtask(source/map)将会阻塞 和 密集型subtask(window)一样多的资源,通过slot共享,确保繁重的subtask在taskManager之间公平分配

相关文章:

Apache Flink中TaskManager,SubTask,TaskSlot,并行度之间的关系

Apache Flink 中Application 与 Job 一个完整的Flink Application 一般组成如下: Source 数据来源Transformation 数据转换处理等Sink 数据传输 Flink 中一个或者多个Operator(算子)组合对数据进行转换形成一个 Transformation,一…...

马斯克xAI新计划:人工智能模型Grok 2测试版即将发布

特斯拉CEO马斯克在X平台上表示,人工智能模型Grok 2测试版即将发布。Grok,作为xAI公司的明星大语言模型,其首代产品Grok 1已凭借神经演化计算与深度学习技术的深度融合,展现了超乎想象的学习速度与智能深度,赢得了业界的…...

【机器人学】6-4.六自由度机器人运动学参数辨识-机器人精度验证【附MATLAB代码】

前言 前两个章节以及完成了机器人参数辨识。 【机器人学】6-1.六自由度机器人运动学参数辨识-辨识数学模型的建立 【机器人学】6-2.六自由度机器人运动学参数辨识-优化方法求解辨识参数 这里我们认为激光测量仪测量到的数据为机器人实际到达的位置,而机器人理论到…...

分销商城小程序系统渠道拓展

线上卖货渠道很多,想要不断提高营收和新客获取,除了自己和工具本身努力外,还需要其他人的帮助来提高商城店铺的整体销量。 搭建saas商城系统网站/小程序,后台上货,设置支付、配送、营销、精美模板商城装修等内容&…...

WPF篇(14)-ProgressBar进度条+Calendar日历控件+DatePicker日期控件

ProgressBar进度条 ProgressBar进度条通常在我们执行某个任务需要花费大量时间时使用,这时可以采用进度条显示任务或线程的执行进度,以便给用户良好的使用体验。 ProgressBar类定义 public class ProgressBar : RangeBase {public static readonly De…...

链表高频题目和必备技巧

链表高频题目和必备技巧 1. 链表类题目注意点 1,如果笔试中空间要求不严格,直接使用容器来解决链表问题 2,如果笔试中空间要求严格、或者在面试中面试官强调空间的优化,需要使用额外空间复杂度**O(1)**的方法 3,最…...

Vue3详细介绍,正则采集器所用前端框架

Vue3 引入了一个全新的响应式系统,它是基于ES6的Proxy特性构建的。这个系统使得 Vue 能够更加高效地追踪数据的变化,并在数据发生变化时自动更新DOM。响应式系统的核心是"可观察",当数据变化时,视图会响应这些变化并重新…...

数据集--COCO2017(快速下载)

1、数据集介绍 数据集官网:https://cocodataset.org/#home COCO(Common Objects in Context)数据集是计算机视觉领域中最广泛使用的数据集之一,主要用于目标检测、分割和图像标注任务。COCO 数据集由 Microsoft 发布&#xff0c…...

【管理咨询宝藏159】顶级咨询公司人力三支柱建设方案思路

阅读完整版报告内容,请搜索VV号“管理咨询宝藏”。 【管理咨询宝藏159】顶级咨询公司人力三支柱建设方案思路 【格式】PDF版本 【关键词】人力咨询、三支柱、人力体系 【核心观点】 - 集团总部制定全集团共享中心总体规划路径,组织并负责实施与推广。各…...

跨时钟域总结

跨时钟域总结 秋招学习跨时钟域 总结一下吧 异步电路 设计中有两个频率不同的时钟(也可能多个),而有数据在两组时钟之间传输 单bit跨时钟域 慢时钟域数据-> 快时钟域 方法 : 使用两个锁存器 (打两拍) 数据跨时钟域同步过程中,脉冲宽度会改变,不影响同步结…...

富婆和富公子都在看的负载均衡和Haproxy大全

一.负载均衡 1.1:什么是负载均衡 负载均衡: Load Balance ,简称 LB ,是一种服务或基于硬件设备等实现的高可用反向代理技术,负载均 衡将特定的业务(web 服务、网络流量等 ) 分担给指定的一个或多个后端特定的服务器或…...

VScode找python环境 (conda)

第一步 CtrlshiftP 第二步 框框里输入:Python:Select Interpreter...

C# Winform序列化和反序列化

在NET Framework 4.7.2中不能用Newtonsoft.Json进行序列化和反序列化,为解决此问题,采用System.Text.Json进行序列化,注意要添加System.Memory的引用。 1、创建测试类 using System; using System.Collections.Generic; using System.Linq; …...

crc原理概述

CRC(循环冗余校验)是一种错误检测技术,用于确保数据在传输或存储过程中没有发生变化。它通过将数据视为一个多项式,利用二进制除法得到一个校验码(CRC值)。接收方使用相同的算法验证数据和CRC值是否匹配&am…...

C++要求或禁止在堆中产生对象

有时你想这样管理某些对象,要让某种类型的对象能够自我销毁,也就是能够“delete this”。很明显这种管理方式需要此类型对象被分配在堆中。而其它一些时候你想获得一种保障:“不在堆中分配对象,从而保证某种类型的类不会发生内存泄…...

为什么阿里开发手册推荐用静态工厂方法代替构造器?

🍅 作者简介:哪吒,CSDN2021博客之星亚军🏆、新星计划导师✌、博客专家💪 🍅 哪吒多年工作总结:Java学习路线总结,搬砖工逆袭Java架构师 🍅 技术交流:定期更新…...

前端写法建议【让项目更加易于维护】

背景 标题前提条件: 没有字典接口、或其他原因,需要前端手动维护的情况 示例环境:vue2,其他项目同理 示例 如果项目有某种类别,前端和后端约定好了,某些情况下,需要前端写死时。 比如有字段…...

EasyExcel 自定义转换器、自定义导出字典映射替换、满足条件内容增加样式,完整代码+详细注释说明

虽然最之前是在其他地方看到的,但最终因缘巧合下找到了原文,还是尊重一下原作者。 参考引用了这位佬的博客,确实方便使用。 https://blog.csdn.net/qq_45914616/article/details/137200688?spm1001.2014.3001.5502 这是一个基于Easyexcel通过…...

C语言学习笔记 Day10(指针--中)

Day10 内容梳理: 目录 Chapter 7 指针 7.4 指针 & 数组 (1)指针操作数组元素 (2)指针加减运算 1)加法 2)减法 (3)指针数组 7.5 多级指针 Chapter 7 指针 …...

网页显示打印 pdf

文件服务使用 minio,使用 nginx 反向代理。 将文件存放在 minio 上,如果是公开的文件,则统一放到一个桶,设置为公开只读。 如果是私有文件,则使用临时链接,给有权限的用户查看和打印。 要实现在 html 页…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...

Windows电脑能装鸿蒙吗_Windows电脑体验鸿蒙电脑操作系统教程

鸿蒙电脑版操作系统来了,很多小伙伴想体验鸿蒙电脑版操作系统,可惜,鸿蒙系统并不支持你正在使用的传统的电脑来安装。不过可以通过可以使用华为官方提供的虚拟机,来体验大家心心念念的鸿蒙系统啦!注意:虚拟…...

node.js的初步学习

那什么是node.js呢? 和JavaScript又是什么关系呢? node.js 提供了 JavaScript的运行环境。当JavaScript作为后端开发语言来说, 需要在node.js的环境上进行当JavaScript作为前端开发语言来说,需要在浏览器的环境上进行 Node.js 可…...

k8s从入门到放弃之Pod的容器探针检测

k8s从入门到放弃之Pod的容器探针检测 在Kubernetes(简称K8s)中,容器探测是指kubelet对容器执行定期诊断的过程,以确保容器中的应用程序处于预期的状态。这些探测是保障应用健康和高可用性的重要机制。Kubernetes提供了两种种类型…...

Copilot for Xcode (iOS的 AI辅助编程)

Copilot for Xcode 简介Copilot下载与安装 体验环境要求下载最新的安装包安装登录系统权限设置 AI辅助编程生成注释代码补全简单需求代码生成辅助编程行间代码生成注释联想 代码生成 总结 简介 尝试使用了Copilot,它能根据上下文补全代码,快速生成常用…...

Linux入门课的思维导图

耗时两周,终于把慕课网上的Linux的基础入门课实操、总结完了! 第一次以Blog的形式做学习记录,过程很有意思,但也很耗时。 课程时长5h,涉及到很多专有名词,要去逐个查找,以前接触过的概念因为时…...