当前位置: 首页 > news >正文

yolo v8 + flask部署到云服务器,以及问题记录

环境安装

1、运行项目报错:no python application found, check your startup logs for errors

在云服务器pytorch版本安装错了,安装了GPU版本,需要安装CPU版本

# CPU only 使用下面这段代码避免出现第二个错误
pip install torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 --index-url https://download.pytorch.org/whl/cpu

2、运行项目报错:RuntimeError: operator torchvision::nms does not exist

检查发现pytorch中torchvision版本不匹配:

卸载重装对应匹配版本:

# CPU only
pip install torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 --index-url https://download.pytorch.org/whl/cpu

3、后端python文件编写,涉及到读写文件、模型预测、以及获取结果分析,转换yolo预测结果为指定的json格式数据。

import os
import numpy as np
import torch.hub
#导入Yolov8,需要提前安装ultralytics库
from ultralytics import YOLO
from flask import Flask
#运用Python的flask类实现与前台信息的交互
from flask import request
from flask import send_file
import base64
import cv2
import time
import json
from pathlib import Pathapp = Flask(__name__)
# 调用训练好的模型
model = YOLO('./best.pt')
@app.route('/', methods=['GET', 'POST'])
def uploads():# 拿到变量img对应的图片img = request.files.get('img')if img:# 重命名name = 'img.jpg'# 保存img.save(os.path.join('./img', name))fileName = "./img/"+name# results = model.predict('./img/img.jpg',save=True)#调用模型进行判断 save_txt=Trueresults = model.predict(fileName,save=True,save_txt=True)# 类名字典names = results[0].nameslistData = []for key in names:# print(key, names[key])data = {'name': names[key],"value": 0}listData.append(data)# 读取数据分析内容# print(listData)content = getContent(results,listData)# print(content)# 5. 返回结果data = {"errCode":0,"msg":"success","data":content,"img":results[0].path}return json.dumps(data)else:data = {"errCode":1,"msg":"cannot find file!"}return json.dumps(data)# 获取结果文本内容
def getContent(results,listData):# 获取文件保存的路径save_path = Path(results[0].save_dir)content = []# 获取label标签文件for r in results:im_name = Path(r.path).stemlabels = save_path / f"labels/{im_name}.txt"# 读取标签文件中的内容txt_file = labelswith open(txt_file, 'r') as file:# content = file.read()lines = file.readlines()print(lines)for line in lines:index = int(line.split()[0])print("每行---", index)if index<len(listData) and listData[index]:# print(listData[index]["name"],listData[index]["value"])listData[index]["value"] +=1# 返回结果return listData
if __name__ == '__main__':app.run()

前端接收到返回数据:

4、flask上传的图片文件无法访问的问题

根据上述返回数据中,预测目标后的结果图片地址:https://***.com/runs/detect/predict/***.jpg,这个路径无法被访问,需要单独配置:

# 配置路径访问
from flask import send_from_directory# .....# 文件访问 runs/detect/predict*/
@app.route('/runs/<path:path>')
def send_image(path):# print(path,'------path')# print(send_from_directory('runs/', path))return send_from_directory('runs/', path)
import os
import numpy as np
import torch.hub
#导入Yolov8,需要提前安装ultralytics库
from ultralytics import YOLO
from flask import Flask
#运用Python的flask类实现与前台信息的交互
from flask import request
from flask import send_file
import base64
import cv2
import time
import json
from pathlib import Path
# 配置路径访问
from flask import send_from_directoryapp = Flask(__name__)
# 验证请求
verifyCode = "89jjkdsw909324jjkjds9f8sdf"# 文件访问 runs/detect/predict*/
@app.route('/runs/<path:path>')
def send_image(path):# print(path,'------path')# print(send_from_directory('runs/', path))return send_from_directory('runs/', path)# 调用训练好的模型
model = YOLO('./best.pt')
@app.route('/', methods=['GET', 'POST'])
def uploads():# 获取前端上传code,判断是否合法请求postData = request.form if request.form else request.json# print(postData.get("code"))verifyRes = verify(postData.get("code"))# 是否非法请求if verifyRes == False:data = {"errCode":1, "msg": "illegal request!"}return json.dumps(data)# 拿到变量img对应的图片img = request.files.get('img')if img:# 重命名name = str(time.time())+'.jpg'# 保存img.save(os.path.join('./img', name))fileName = "./img/"+name# results = model.predict('./img/img.jpg',save=True)#调用模型进行判断 save_txt=Trueresults = model.predict(fileName,save=True,save_txt=True)# 类名字典names = results[0].nameslistData = []for key in names:# print(key, names[key])data = {'name': names[key],"value": 0}listData.append(data)# 读取数据分析内容# print(listData)content = getContent(results,listData)# print(content)# 5. 返回结果data = {"errCode": 0,"msg": "success","data": content,"img": results[0].save_dir+"/"+name}return json.dumps(data)else:data = {"errCode":1,"msg":"cannot find file!"}return json.dumps(data)# 验证code合法性
def verify(code):return code == verifyCode# 获取结果文本内容
def getContent(results,listData):# 获取文件保存的路径save_path = Path(results[0].save_dir)content = []# 获取label标签文件for r in results:im_name = Path(r.path).stemlabels = save_path / f"labels/{im_name}.txt"# 读取标签文件中的内容txt_file = labelswith open(txt_file, 'r') as file:# content = file.read()lines = file.readlines()# print(lines)for line in lines:index = int(line.split()[0])# print("每行---", index)if index<len(listData) and listData[index]:# print(listData[index]["name"],listData[index]["value"])listData[index]["value"] +=1# 返回结果return listData
if __name__ == '__main__':app.run()

参考文档:预测 -Ultralytics YOLO 文档

相关文章:

yolo v8 + flask部署到云服务器,以及问题记录

环境安装 1、运行项目报错&#xff1a;no python application found, check your startup logs for errors 在云服务器pytorch版本安装错了&#xff0c;安装了GPU版本&#xff0c;需要安装CPU版本 # CPU only 使用下面这段代码避免出现第二个错误 pip install torch2.3.1 to…...

【科研必备插件】easyscholar如何使文章显示期刊影响因子与分区等级

简要介绍 EasyScholar 是一个微软 Edge 浏览器的扩展程序&#xff0c;可以显示会议、期刊等级。可支持在各大论文搜索网站&#xff0c;显示各种期刊、会议等级排名 要想你的知网页面如下图所示&#xff0c;快来获取安装&#xff0c;快速科研有方法 插件安装教程 ①打开浏览器…...

UE5 UrlEncode转换

调用接口时用到了 UFUNCTION(BlueprintPure, Category "FuncLib", meta (Keywords "URL1"))static FString StringToURLEncode(const FString& str1);FString UBasicFuncLib::StringToURLEncode(const FString& str1){return FGenericPlatformH…...

【QML】Qt.rgba()的正确使用方法

1. 问题 设置颜色 color: Qt.rgba(65,105,225,255) &#xff0c;应该是蓝色&#xff0c;却显示白色。 2. 正确方法 //正确代码 color: Qt.rgba(65/255, 105/255, 225/255, 255/255)...

centos7.9 docker安装

1、不要通过yum直接安装 具体原因&#xff1a; CentOS 6 因内核太旧&#xff0c;即使支持安装 docker&#xff0c;但会有各种问题&#xff0c;不建议安装CentOS 7 的 extras 源虽然可以安装 docker&#xff0c;但包比较旧&#xff0c;建议从官方源或镜像源站点下载安装 docke…...

spring操作数据库

xml版 程序结构 配置文件 dbUtil-阿帕奇提供操作数据库的插件 核心类&#xff1a;QueryRunner .query() 查询 .update() 增删改 <dependencies><!-- spring --><dependency><groupId>org.springframework</groupId><artifactId>spri…...

Apache Flink中TaskManager,SubTask,TaskSlot,并行度之间的关系

Apache Flink 中Application 与 Job 一个完整的Flink Application 一般组成如下&#xff1a; Source 数据来源Transformation 数据转换处理等Sink 数据传输 Flink 中一个或者多个Operator&#xff08;算子&#xff09;组合对数据进行转换形成一个 Transformation&#xff0c;一…...

马斯克xAI新计划:人工智能模型Grok 2测试版即将发布

特斯拉CEO马斯克在X平台上表示&#xff0c;人工智能模型Grok 2测试版即将发布。Grok&#xff0c;作为xAI公司的明星大语言模型&#xff0c;其首代产品Grok 1已凭借神经演化计算与深度学习技术的深度融合&#xff0c;展现了超乎想象的学习速度与智能深度&#xff0c;赢得了业界的…...

【机器人学】6-4.六自由度机器人运动学参数辨识-机器人精度验证【附MATLAB代码】

前言 前两个章节以及完成了机器人参数辨识。 【机器人学】6-1.六自由度机器人运动学参数辨识-辨识数学模型的建立 【机器人学】6-2.六自由度机器人运动学参数辨识-优化方法求解辨识参数 这里我们认为激光测量仪测量到的数据为机器人实际到达的位置&#xff0c;而机器人理论到…...

分销商城小程序系统渠道拓展

线上卖货渠道很多&#xff0c;想要不断提高营收和新客获取&#xff0c;除了自己和工具本身努力外&#xff0c;还需要其他人的帮助来提高商城店铺的整体销量。 搭建saas商城系统网站/小程序&#xff0c;后台上货&#xff0c;设置支付、配送、营销、精美模板商城装修等内容&…...

WPF篇(14)-ProgressBar进度条+Calendar日历控件+DatePicker日期控件

ProgressBar进度条 ProgressBar进度条通常在我们执行某个任务需要花费大量时间时使用&#xff0c;这时可以采用进度条显示任务或线程的执行进度&#xff0c;以便给用户良好的使用体验。 ProgressBar类定义 public class ProgressBar : RangeBase {public static readonly De…...

链表高频题目和必备技巧

链表高频题目和必备技巧 1. 链表类题目注意点 1&#xff0c;如果笔试中空间要求不严格&#xff0c;直接使用容器来解决链表问题 2&#xff0c;如果笔试中空间要求严格、或者在面试中面试官强调空间的优化&#xff0c;需要使用额外空间复杂度**O(1)**的方法 3&#xff0c;最…...

Vue3详细介绍,正则采集器所用前端框架

Vue3 引入了一个全新的响应式系统&#xff0c;它是基于ES6的Proxy特性构建的。这个系统使得 Vue 能够更加高效地追踪数据的变化&#xff0c;并在数据发生变化时自动更新DOM。响应式系统的核心是"可观察"&#xff0c;当数据变化时&#xff0c;视图会响应这些变化并重新…...

数据集--COCO2017(快速下载)

1、数据集介绍 数据集官网&#xff1a;https://cocodataset.org/#home COCO&#xff08;Common Objects in Context&#xff09;数据集是计算机视觉领域中最广泛使用的数据集之一&#xff0c;主要用于目标检测、分割和图像标注任务。COCO 数据集由 Microsoft 发布&#xff0c…...

【管理咨询宝藏159】顶级咨询公司人力三支柱建设方案思路

阅读完整版报告内容&#xff0c;请搜索VV号“管理咨询宝藏”。 【管理咨询宝藏159】顶级咨询公司人力三支柱建设方案思路 【格式】PDF版本 【关键词】人力咨询、三支柱、人力体系 【核心观点】 - 集团总部制定全集团共享中心总体规划路径&#xff0c;组织并负责实施与推广。各…...

跨时钟域总结

跨时钟域总结 秋招学习跨时钟域 总结一下吧 异步电路 设计中有两个频率不同的时钟(也可能多个),而有数据在两组时钟之间传输 单bit跨时钟域 慢时钟域数据-> 快时钟域 方法 : 使用两个锁存器 (打两拍) 数据跨时钟域同步过程中,脉冲宽度会改变&#xff0c;不影响同步结…...

富婆和富公子都在看的负载均衡和Haproxy大全

一.负载均衡 1.1&#xff1a;什么是负载均衡 负载均衡&#xff1a; Load Balance &#xff0c;简称 LB &#xff0c;是一种服务或基于硬件设备等实现的高可用反向代理技术&#xff0c;负载均 衡将特定的业务(web 服务、网络流量等 ) 分担给指定的一个或多个后端特定的服务器或…...

VScode找python环境 (conda)

第一步 CtrlshiftP 第二步 框框里输入&#xff1a;Python:Select Interpreter...

C# Winform序列化和反序列化

在NET Framework 4.7.2中不能用Newtonsoft.Json进行序列化和反序列化&#xff0c;为解决此问题&#xff0c;采用System.Text.Json进行序列化&#xff0c;注意要添加System.Memory的引用。 1、创建测试类 using System; using System.Collections.Generic; using System.Linq; …...

crc原理概述

CRC&#xff08;循环冗余校验&#xff09;是一种错误检测技术&#xff0c;用于确保数据在传输或存储过程中没有发生变化。它通过将数据视为一个多项式&#xff0c;利用二进制除法得到一个校验码&#xff08;CRC值&#xff09;。接收方使用相同的算法验证数据和CRC值是否匹配&am…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

Linux部署私有文件管理系统MinIO

最近需要用到一个文件管理服务&#xff0c;但是又不想花钱&#xff0c;所以就想着自己搭建一个&#xff0c;刚好我们用的一个开源框架已经集成了MinIO&#xff0c;所以就选了这个 我这边对文件服务性能要求不是太高&#xff0c;单机版就可以 安装非常简单&#xff0c;几个命令就…...

如何在Windows本机安装Python并确保与Python.NET兼容

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…...

CppCon 2015 学习:Time Programming Fundamentals

Civil Time 公历时间 特点&#xff1a; 共 6 个字段&#xff1a; Year&#xff08;年&#xff09;Month&#xff08;月&#xff09;Day&#xff08;日&#xff09;Hour&#xff08;小时&#xff09;Minute&#xff08;分钟&#xff09;Second&#xff08;秒&#xff09; 表示…...

yaml读取写入常见错误 (‘cannot represent an object‘, 117)

错误一&#xff1a;yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因&#xff0c;后面把yaml.safe_dump直接替换成yaml.dump&#xff0c;确实能保存&#xff0c;但出现乱码&#xff1a; 放弃yaml.dump&#xff0c;又切…...

HTML版英语学习系统

HTML版英语学习系统 这是一个完全免费、无需安装、功能完整的英语学习工具&#xff0c;使用HTML CSS JavaScript实现。 功能 文本朗读练习 - 输入英文文章&#xff0c;系统朗读帮助练习听力和发音&#xff0c;适合跟读练习&#xff0c;模仿学习&#xff1b;实时词典查询 - 双…...

Shell 解释器​​ bash 和 dash 区别

bash 和 dash 都是 Unix/Linux 系统中的 ​​Shell 解释器​​&#xff0c;但它们在功能、语法和性能上有显著区别。以下是它们的详细对比&#xff1a; ​​1. 基本区别​​ ​​特性​​​​bash (Bourne-Again SHell)​​​​dash (Debian Almquist SHell)​​​​来源​​G…...

Yolo11改进策略:Block改进|FCM,特征互补映射模块|AAAI 2025|即插即用

1 论文信息 FBRT-YOLO&#xff08;Faster and Better for Real-Time Aerial Image Detection&#xff09;是由北京理工大学团队提出的专用于航拍图像实时目标检测的创新框架&#xff0c;发表于AAAI 2025。论文针对航拍场景中小目标检测的核心难题展开研究&#xff0c;重点解决…...