深入理解Kafka核心设计与实践原理_03
深入理解Kafka核心设计与实践原理_03
- 03_消费者
 - 3.1消费者与消费者组
 - 3.2客户端开发
 - 3.2.1 必要的参数配置
 - 3.2.2 订阅主题与分区
 
草稿
03_消费者
与生产者对应的是消费者,应用程序可以通过KafkaConsumer来订阅主题,并从订阅的主题中拉取消息。不过在使用KafkaConsumer消费消息之前需要先了解消费者和消费组的概念,否则无法理解如何使用 KafkaConsumer。本章首先讲解消费者与消费组之间的关系,进而再细致地讲解如何使用KafkaConsumer。
3.1消费者与消费者组
消费者(Consumer)负责订阅Kafka中的主题(Topic),并且从订阅的主题上拉取消息。与其他一些消息中间件不同的是:在Kafka的消费理念中还有一层消费组(Consumer Group)的概念,每个消费者都有一个对应的消费组。当消息发布到主题后,只会被投递给订阅它的每个消费组中的一个消费者。消费者与消费组这种模型可以让整体的消费能力具备横向伸缩性,我们可以增加(或减少)消费者的个数来提高(或降低)整体的消费能力。
对于消息中间件而言,一般有两种消息投递模式:点对点(P2P,Point-to-Point)模式和发布/订阅(Pub/Sub)模式。
点对点模式是基于队列的,消息生产者发送消息到队列,消息消费者从队列中接收消息。发布订阅模式定义了如何向一个内容节点发布和订阅消息,这个内容节点称为主题(Topic),主题可以认为是消息传递的中介,消息发布者将消息发布到某个主题,而消息订阅者从主题中订阅消息。主题使得消息的订阅者和发布者互相保持独立,不需要进行接触即可保证消息的传递,发布/订阅模式在消息的一对多广播时采用。
Kafka 同时支持两种消息投递模式,而这正是得益于消费者与消费组模型的契合:· 如果所有的消费者都隶属于同一个消费组,那么所有的消息都会被均衡地投递给每一个消费者,即每条消息只会被一个消费者处理,这就相当于点对点模式的应用。· 如果所有的消费者都隶属于不同的消费组,那么所有的消息都会被广播给所有的消费者,即每条消息会被所有的消费者处理,这就相当于发布/订阅模式的应用。
消费组是一个逻辑上的概念,它将旗下的消费者归为一类,每一个消费者只隶属于一个消费组。每一个消费组都会有一个固定的名称,消费者在进行消费前需要指定其所属消费组的名称,这个可以通过消费者客户端参数group.id来配置,默认值为空字符串。消费者并非逻辑上的概念,它是实际的应用实例,它可以是一个线程,也可以是一个进程。同一个消费组内的消费者既可以部署在同一台机器上,也可以部署在不同的机器上。
3.2客户端开发
(1)配置消费者客户端参数及创建相应的消费者实例。
 (2)订阅主题。
 (3)拉取消息并消费。
 (4)提交消费位移。
 (5)关闭消费者实例。
3.2.1 必要的参数配置
- bootstrap.servers:该参数的释义和生产者客户端 KafkaProducer 中的相同,用来 指 定 连 接 Kafka 集 群 所 需 的 broker 地 址 清 单,具 体 内 容 形 式 为host1:port1,host2:post,可以设置一个或多个地址,中间用逗号隔开,此参数的默认值为“”。注意这里并非需要设置集群中全部的broker地址,消费者会从现有的配置中查找到全部的Kafka集群成员。这里设置两个以上的broker地址信息,当其中任意一个宕机时,消费者仍然可以连接到Kafka集群上。
 - group.id:消费者隶属的消费组的名称,默认值为“”。如果设置为空,则会报出异常:Exception in thread "main"org.apache.kafka.common.errors.InvalidGroupIdException:The configured groupId is invalid。一般而言,这个参数需要设置成具有一定的业务意义的名称。
 - key.deserializer 和 value.deserializer:与生产者客户端 KafkaProducer中的key.serializer和value.serializer参数对应。消费者从broker端获取的消息格式都是字节数组(byte[])类型,所以需要执行相应的反序列化操作才能还原成原有的对象格式。这两个参数分别用来指定消息中key和value所需反序列化操作的反序列化器,这两个参数无默认值。注意这里必须填写反序列化器类的全限定名,比如示例中的org.apache.kafka.common.serialization.StringDeserializer,单单指定StringDeserializer是错误的。
 
注意到代码清单3-1中的initConfig()方法里还设置了一个参数client.id,这个参数用来设定KafkaConsumer对应的客户端id,默认值也为“”。如果客户端不设置,则KafkaConsumer会自动生成一个非空字符串,内容形式如“consumer-1”“consumer-2”,即字符串“consumer-”与数字的拼接。
3.2.2 订阅主题与分区
一个消费者可以订阅一个或多个主题,代码清单3-1中我们使用subscribe()方法订阅了一个主题,对于这个方法而言,既可以以集合的形式订阅多个主题,也可以以正则表达式的形式订阅特定模式的主题。subscribe的几个重载方法如下:
 
 如果消费者采用的是正则表达式的方式(subscribe(Pattern))订阅,在之后的过程中,如果有人又创建了新的主题,并且主题的名字与正则表达式相匹配,那么这个消费者就可以消费到新添加的主题中的消息。如果应用程序需要消费多个主题,并且可以处理不同的类型,那么这种订阅方式就很有效。
在 subscribe 的重载方法中有一个参数类型是ConsumerRebalance-Listener,这个是用来设置相应的再均衡监听器的。
消费者不仅可以通过KafkaConsumer.subscribe()方法订阅主题,还可以直接订阅某些主题的特定分区,在KafkaConsumer中还提供了一个assign()方法来实现这些功能。
 
 该方法只接受一个参数partitions,用来指定需要订阅的分区集合。这里补充说明一下TopicPartition类,在Kafka的客户端中,它用来表示分区。TopicPartition类只有2个属性:topic和partition,分别代表分区所属的主题和自身的分区编号,这个类可以和我们通常所说的主题—分区的概念映射
 起来。
KafkaConsumer 中的partitionsFor()方法可以用来查询指定主题的元数据信息。
相关文章:
深入理解Kafka核心设计与实践原理_03
深入理解Kafka核心设计与实践原理_03 03_消费者3.1消费者与消费者组3.2客户端开发3.2.1 必要的参数配置3.2.2 订阅主题与分区 草稿 03_消费者 与生产者对应的是消费者,应用程序可以通过KafkaConsumer来订阅主题,并从订阅的主题中拉取消息。不过在使用Ka…...
MySQL- 覆盖索引
覆盖索引(Covering Index)是 MySQL 中的一种优化技术,它能够显著提高查询性能。在使用覆盖索引的情况下,查询操作只需要访问索引即可获取所需的数据,而不必再访问表的实际数据行(即不需要回表)。…...
JSON与EXL文件互转
功能:实现json到excel文件的相互转换(支持json多选版) 目的:编码与语言对应,方便大家使用 页面设计: 介绍: 1.选择文件栏目选择想要转换的文件 2.生成路径是转换后文件所在目录 3.小方框勾选与不勾选分别代表exl到…...
后台管理权限自定义按钮指令v-hasPermi
第一步:在src下面建立一个自定义指令文件,放自定义指令方法 permission.js文件: /*** v-hasPermi 操作权限处理*/import store from "/store";export default {inserted(el, binding) {const { value } binding;//从仓库里面获取到后台给的数组const permission s…...
【Python绘制散点图并添加趋势线和公式以及相关系数和RMSE】
在Python中,绘制散点图并添加趋势线(通常是线性回归线)、公式、以及相关系数(Pearson Correlation Coefficient)和均方根误差(RMSE)可以通过结合matplotlib用于绘图,numpy用于数学运…...
linux bridge VLAN
TP-Link 支持 Linux 桥接(bridge)和 VLAN 功能的产品主要包括其高端的交换机和一些企业级路由器: TP-Link JetStream 系列交换机: TL-SG3424: 24端口千兆交换机,支持 VLAN 和桥接。TL-SG3210: 24端口千兆管理型交换机&…...
Java进阶篇之深入理解多态的概念与应用
引言 在Java面向对象编程(OOP)中,多态(Polymorphism)是一个关键概念,它允许相同类型的对象在不同的场景中表现出不同的行为。多态不仅增强了代码的灵活性和可扩展性,还极大地提高了代码的可维护…...
Linux下的进程调度队列
我们在进程那一篇讲到了操作系统时间片轮换调度的概念 那么Linux下具体是怎么调度的?...
统计回归与Matlab软件实现上(一元多元线性回归模型)
引言 关于数学建模的基本方法 机理驱动 由于客观事物内部规律的复杂及人们认识程度的限制,无法得到内在因果关系,建立合乎机理规律的数学模型数据驱动 直接从数据出发,找到隐含在数据背后的最佳模型,是数学模型建立的另一大思路…...
【项目】基于Vue3.2+ElementUI Plus+Vite 通用后台管理系统
构建项目 环境配置 全局安装vue脚手架 npm install -g vue/cli-init打开脚手架图形化界面 vue ui创建项目 在图形化界面创建项目根据要求填写项目相关信息选择手动配置勾选配置项目选择配置项目然后我们就搭建完成啦🥳,构建可能需要一点时间࿰…...
随机生成 UUID
1、随机生成 UUID主方法 /*** 随机生成 UUID* param {*} len 生成字符串的长度* param {*} radix 生成随机字符串的长度**/export function uuid_(len 30, radix 20) {var chars 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz.split()var uuid [],ir…...
报名表EXCEL图片批量下载源码-CyberWinApp-SAAS 本地化及未来之窗行业应用跨平台架构
每次报名表都会包含大量照片,一张一张下载很慢 可以通过未来之窗开源平台架构 开开excel批量下载 实现代码也很简单 function 未来之窗下载(){ let 未来之窗地址 document.getElementById("batchurl").value; let 保存路径 document.getElementById(…...
SpringBoot 整合 Elasticsearch 实现商品搜索
一、Spring Data Elasticsearch Spring Data Elasticsearch 简介 Spring Data Elasticsearch是Spring提供的一种以Spring Data风格来操作数据存储的方式,它可以避免编写大量的样板代码。 常用注解 常用注解说明如下: 注解名称 作用 参数说明 Docu…...
计算机毕业设计 助农产品采购平台 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试
🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点…...
Django后台数据获取展示
 续接Django REST Framework,使用Vite构建Vue3的前端项目 1.跨域获取后台接口并展示 安装Axios npm install axios --save 前端查看后端所有定义的接口 // 访问后端定义的可视化Api接口文档 http://ip:8000/docs/ // 定义的学生类信息 http://ip:8000/api/v1…...
innodb 如何保证数据的一致性?
InnoDB是MySQL的默认存储引擎之一,它通过多种机制来保证数据的一致性。以下是InnoDB保证数据一致性的主要方式: 1. 事务支持 InnoDB实现了ACID(原子性、一致性、隔离性和持久性)事务模型,这是保证数据一致性的基础。…...
Oracle-OracleConnection
提示:OracleConnection 主要负责与Oracle数据库的交互,特别针对CDC功能,提供了获取和处理数据库更改日志的能力,同时包含数据库连接管理、查询执行和结果处理的通用功能,与DB2Connection作用相似 文章目录 前言一、核心…...
基于hadoop的网络流量分析系统的研究与应用
目录 摘要 1 Abstract 2 第1章 绪论 3 1.1 研究背景 3 1.2 研究目的和意义 4 1.2.1 研究目的 4 1.2.2 研究意义 6 1.3 国内外研究现状分析 7 1.3.1 国内研究现状 7 1.3.2 国外研究现状 9 1.4 研究内容 11 第2章 Hadoop技术及相关组件介绍 12 2.1 HDFS的工作原理及…...
【C# WPF WeChat UI 简单布局】
创建WPF项目 VS创建一个C#的WPF应用程序: 创建完成后项目目录下会有一个MainWindow.xaml文件以及MainWindow.cs文件,此处将MainWindow.xaml文件作为主页面的布局文件,也即为页面的主题布局都在该文件进行。 布局和数据 主体布局 Wechat的布局可暂时分为三列, 第一列为菜…...
关于docker的几个概念(二)
目录 1. 为何Docker CentOS镜像比传统CentOS镜像小得多?2. 镜像的分层结构及其优势3. 讲一下容器的copy-on-write特性,修改容器里面的内容会修改镜像吗?4. 简单描述一下Dockerfile的整个构建镜像过程 1. 为何Docker CentOS镜像比传统CentOS镜…...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...
软件工程 期末复习
瀑布模型:计划 螺旋模型:风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合:模块内部功能紧密 模块之间依赖程度小 高内聚:指的是一个模块内部的功能应该紧密相关。换句话说,一个模块应当只实现单一的功能…...
加密通信 + 行为分析:运营商行业安全防御体系重构
在数字经济蓬勃发展的时代,运营商作为信息通信网络的核心枢纽,承载着海量用户数据与关键业务传输,其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级,传统安全防护体系逐渐暴露出局限性&a…...
