书生.浦江大模型实战训练营——(四)书生·浦语大模型全链路开源开放体系
最近在学习书生.浦江大模型实战训练营,所有课程都免费,以关卡的形式学习,也比较有意思,提供免费的算力实战,真的很不错(无广)!欢迎大家一起学习,打开LLM探索大门:邀请连接,
PS,邀请有算力哈哈。
任务
观看本关卡的视频与官网后,写下关于书生大模型全链路开源开放体系的笔记。
书生·浦语大模型全链路开源开放体系
- 一、体系概述
- 二、发展历程
- 三、最新版本特性:书生·浦语大模型2.5
视频时长约30分钟,内容涵盖了书生·浦语大模型的全链路开发体系及其关键技术,学到的东西很多。接下来我会继续研究知识图谱、检索增强生成以及基于图神经网络的长文本处理,期待大家一起交流!以下是对此视频内容的详细总结。
一、体系概述
书生·浦语大模型全链路开源开放体系旨在构建一个包括数据收集、模型训练、微调、评测以及AI应用部署的完整生态。通过开源代码和项目,推动了人工智能的普及与实际应用,使得研究者和开发者能更高效地利用和开发基于大模型的应用。

二、发展历程
-
开源开放体系的建立:书生·浦语大模型自始便重视开源,通过发布开源项目吸引了众多开发者和研究者的参与。这种开放的形式加快了模型的迭代与优化。
-
数据收集与整理:该模型在数据驱动的过程中,采用多种数据生成方式,包括基于规则、模型以及反馈的数据生成。这提高了数据的多样性,增强了模型的推理能力及短期记忆。
-
反馈机制的引入:引入相似度对齐与基于反馈的强化训练后,模型在理解用户需求方面的表现有所提升,进而提高了准确性和用户满意度。

三、最新版本特性:书生·浦语大模型2.5
-
性能提升:在最新版本的书生·浦语大模型2.5中,推理能力和短期记忆等方面得到了显著提升,从而在处理复杂问题时更快速且准确。
-
Label LLM项目开源:为了简化数据标注过程,书生团队开源了Label LLM项目,提供了高效的数据标注解决方案,进而促进后续模型的训练和优化。
-
性能评测体系:视频中的性能天梯展示了通过各种评测工具对模型进行实时性能监测和比较的方法,为模型的持续优化提供了依据。

以下是一段简单的internLM推理代码示例:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLMmodel_name_or_path = "/root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='cuda:0')
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='cuda:0')
model = model.eval()system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""messages = [(system_prompt, '')]print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")while True:input_text = input("\nUser >>> ")input_text = input_text.replace(' ', '')if input_text == "exit":breaklength = 0for response, _ in model.stream_chat(tokenizer, input_text, messages):if response is not None:print(response[length:], flush=True, end="")length = len(response)
希望这些内容能对大家理解书生·浦语大模型有所帮助!
相关文章:
书生.浦江大模型实战训练营——(四)书生·浦语大模型全链路开源开放体系
最近在学习书生.浦江大模型实战训练营,所有课程都免费,以关卡的形式学习,也比较有意思,提供免费的算力实战,真的很不错(无广)!欢迎大家一起学习,打开LLM探索大门…...
SpringBoot 整合 RabbitMQ 实现延迟消息
一、业务场景说明 用于解决用户下单以后,订单超时如何取消订单的问题。 用户进行下单操作(会有锁定商品库存、使用优惠券、积分一系列的操作);生成订单,获取订单的id;获取到设置的订单超时时间࿰…...
Cilium:基于开源 eBPF 的网络、安全性和可观察性
基于 eBPF 的网络、安全性和可观察性 Cilium 是一种开源的云原生解决方案,它利用 Linux 内核中的 eBPF 技术来提供、保护和监控工作负载之间的网络连接。 什么是 eBPF? eBPF 是一项源自 Linux 内核的技术,允许沙盒程序在特权上下文&#x…...
Axios 详解与使用指南
Axios 详解与使用指南 1. Axios 简介 Axios 是一个基于 Promise 的 HTTP 客户端,能够在浏览器和 Node.js 环境中运行。它提供了一种简便的方式来执行 HTTP 请求,并支持多种请求方法,如 GET、POST、PUT、DELETE 等。Axios 的配置灵活&#x…...
深度学习 —— 个人学习笔记20(转置卷积、全卷积网络)
声明 本文章为个人学习使用,版面观感若有不适请谅解,文中知识仅代表个人观点,若出现错误,欢迎各位批评指正。 三十九、转置卷积 import torch from torch import nndef trans_conv(X, K):h, w K.shapeY torch.zeros((X.shape[…...
解决Mac系统Python3.12版本pip安装报错error: externally-managed-environment的问题
遇到的问题 在Mac安装了Python3.12.x版本(3.12.3、3.12.4)后,当尝试pip3 install xxx的时候,总是报错:error: externally-managed-environment error: externally-managed-environment This environment is external…...
lvm知识终结
、什么是 LVM LVM 是 Linux 下对磁盘分区进行管理的一种工具,适合管理大存储设备,并允许用户动态调整文件系统的大小 lvm 常用的命令 功能 PV 管理命令 VG 管理命令 LV 管理命令 scan 扫描 pvscan vgscan lvscan create 创建 pvcreate v…...
ESP32S3 IDF 对 16路输入输出芯片MCP23017做了个简单的测试
这次还是使用了idf老版本4.4.7,上次用了5.3,感觉不好用,官方的MCP23017芯片是英文版,真的很难读明白,可能是我英语水平不够吧。先看看每个寄存器的功能: IODIRA 和 IODIRB: 输入/输出方向寄存器 IPOLA 和 I…...
【技术前沿】Flux.1部署教程入门--Stable Diffusion团队最前沿、免费的开源AI图像生成器
项目简介 FLUX.1 是一种新的开源图像生成模型。它由 Stable Diffusion 背后的团队 Black Forest Labs 开发。 官网中有以下功能开源供大家参考: FLUX.1 擅长在图像中准确再现文字,因此非常适合需要清晰文字或短语的设计。无论是标牌、书籍封面还是品牌…...
Redis 的 STREAM 和 RocketMQ 是两种不同的消息队列和流处理解决方案,它们在设计理念、功能和用途上有显著区别。以下是它们的主要区别:
20240813 Redis 的 STREAM 和 RocketMQ 是两种不同的消息队列和流处理解决方案,它们在设计理念、功能和用途上有显著区别。以下是它们的主要区别:1. 使用 Redis 的 Sorted Set 数据结构连接到 Redis示例用法添加事件获取滑动窗口内的事件移除过期事件连接…...
Visual Studio Code安装与C/C++语言运行(上)
Visual Studio Code(VS Code)作为微软开发的一款轻量级但功能强大的源代码编辑器,广泛应用于各种编程语言的开发,包括C/C。以下将详细介绍VS Code的安装过程以及与C/C语言运行环境的配置。 一、Visual Studio Code的安装 1. 准备…...
探索数据可视化,数据看板在各行业中的应用
数据可视化是一种通过图形化手段将数据呈现出来的技术,它将复杂的数据和信息转化为易于理解的图表、地图、仪表盘等视觉元素,使得数据的模式、趋势和关系更加直观地展现出来。通过数据可视化,用户可以快速识别重要信息、发现潜在问题…...
haralyzer 半自动,一次性少量数据采集快捷方法
使用场景:半自动,一次性少量数据采集需求在工作中还是不少遇到的,无论使用模拟的方式,或者破解都不太划算。其实这种需求,使用半自动爬虫是最简单的。不需要考虑网站反爬虫的问题,因为你使用的就是真实的浏…...
mall-admin-web-master前端项目下载依赖失败解决
碰壁后的总结 pythone 环境 2.XX版本,切记不要3.0以上的。node 16.x不能太高 错误案例 npm ERR! code 1 npm ERR! path D:\workspace\springBootMall\mall-admin-web-master\node_modules\node-sass npm ERR! command failed npm ERR! command C:\windows\system…...
【07】JVM是怎么实现invokedynamic的
在Java中,方法调用会被编译为invokeStatic,invokeSpecial,invokVirtual以及invokeInterface四种指令。这些指令与包含目标方法类名、方法名以及方法描述符的符号引用捆绑,在实际运行之前,JVM根据这个符号引用链接到具体…...
使用API有效率地管理Dynadot域名,查看参与的拍卖列表
前言 Dynadot是通过ICANN认证的域名注册商,自2002年成立以来,服务于全球108个国家和地区的客户,为数以万计的客户提供简洁,优惠,安全的域名注册以及管理服务。 Dynadot平台操作教程索引(包括域名邮箱&…...
Linux 基本指令讲解
linux 基本指令 clear 清屏 Alt Enter 全屏/退出全屏 pwd 显示当前用户所处路径 cd 改变目录 cd /root/mikecd … 返回上级目录cd - 返回最近所处的路径cd ~ 直接返回当前用户自己的家目 roor 中:/root普通用户中:/home/mike mkdir 创建一个文件夹(d) …...
PRE_EMPHASIS
PRE_EMPASIS属性用于提高高频信号的信号完整性 其通过传输线遭受高频损耗。发射机 预加重(pre_EMPASIS)功能允许对某些信号驱动器进行预加重 I/O标准。 提示:发射机的预加重可以与接收机的均衡相结合,以提高 整体信号完整性。 理想…...
【QT常用技术讲解】多线程处理+全局变量处理异步事件并获取多个线程返回的结果
前言 QTableView加入勾选项后(参考【QT常用技术讲解】QTableView添加QCheckBox、QPushButton),如果支持右键菜单功能,此时就有统一执行多个异步事件,并且统一输出到界面的需求了,本篇结合多线程共享全局变量…...
数组列表中的最大距离
给定 m 个数组,每个数组都已经按照升序排好序了。现在你需要从两个不同的数组中选择两个整数(每个数组选一个)并且计算它们的距离。两个整数 a 和 b 之间的距离定义为它们差的绝对值 |a-b| 。你的任务就是去找到最大距离 示例 1:…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
