⌈ 传知代码 ⌋ Visual SLAM函数
💛前情提要💛
本文是传知代码平台中的相关前沿知识与技术的分享~
接下来我们即将进入一个全新的空间,对技术有一个全新的视角~
本文所涉及所有资源均在传知代码平台可获取
以下的内容一定会让你对AI 赋能时代有一个颠覆性的认识哦!!!
以下内容干货满满,跟上步伐吧~
📌导航小助手📌
- 💡本章重点
- 🍞一. 概述
- 🍞二. 演示效果
- 🍞三.核心逻辑
- 🍞四.使用方式
- 🫓总结
💡本章重点
- Visual SLAM函数
🍞一. 概述
SLAM代表同步定位和地图构建(Simultaneous Localization and Mapping),这一技术的主要含义在于其能让一个计算机通过外界定位传感器所传回的信息,经过算法函数的整合与过滤后可以得出该计算机所对应的代理机器处在的探测环境中的准确位置。在这其中,Visual SLAM便是一个只用环境图像便能实现精准定位的一个SLAM函数,并且还能是吸纳动态构造并实时更新周遭环境地图,让机器人可以在构建出的3D地图里定位和规划路径。
目前在OpenCV中基于视觉的算法函数主要分成三种————SIFT函数、SURF函数、以及ORB函数。三个对比中,SIFT函数是位置识别能力中效果最精确,所构建出的3D地图模型最能还原真实环境的函数,识别能力是最强的,但由于SIFT函数的图像采集层次较多导致它非常的耗费计算机资源,并且它较为复杂的函数识别原理也不利于新手第一次接触;SURF函数和SIFT函数正好相反,SURF函数的识别原理较为简单直接,让它可以在计算资源较为紧迫的环境下进行定位,但它的定位精度即便在多次调试后往往还是存在较大的偏差,并且还会出现0点浮动的情况,比较不适合定位精度要求较高的场景;ORB函数就相当于SIFT函数和SURF函数的结合体,它既可以在调试后得到不错的定位精度,同时还采用了一个效率较高的函数算法,使其不那么的耗费计算机资源。本文章将会以ORBSLAM为主要介绍对象,带大家了解其背后原理并且在Linux Ubuntu系统下展示其效果。
ORBSLAM的背后原理就是围绕着每张图片里的 “角” 的定位,并在后续的图像中追踪 “角” 与 “角” 之间的相对位置变化,从而实现视觉定位。ORBSLAM(Oriented FAST and Rotated BRIEF – SLAM)其实包含了另外两个子函数FAST和BRIEF,其中的FAST函数(Features from Accelerated Segment Test)主要实现了 “角” 的识别,而BRIEF函数(Binary Robust Independent Elementary Features)在FAST函数识别了各个不同的 “角” 后会对每个 “角” 赋上他们相应且独一无二的描述信息。
在对每个特征点进行对比和追踪后,ORBSLAM 函数可以生成相应的3D环境地图,并且还会给出摄像头在地图中的坐标点位置,实现了同步定位和地图构建。
🍞二. 演示效果
此次演示使用了最新的 ORBSLAM3 函数并在 ROS2 Humble 的计算机环境下运行来展示和调节 ORBSLAM3。
运行效果如下:

ORBSLAM3 启动后会开始扫描每一帧图像并提取如图绿色的特征点。

在空间内移动摄像头,ORBSLAM3 可以根据特征点的位置变化来判断摄像头的移动距离,并通过不断的采样来实现如右图所示的云点定位图。

随着摄像头的不断移动,在形成闭环的部分后 ORBSLAM 函数会对已知的点位进行特征点校验,生成一个更加精准的3D地图。
🍞三.核心逻辑
ORBSLAM 分成了两个函数部分,其中的FAST函数首先会分析一张图像里每个像素的强度值,并将其与预定义的阈值进行比较,判断强度变化是否满足角点的标准。为了加快处理速度,FAST 巧妙地利用选定点周围的特定像素子集进行检查。如果这部分像素中足够多的点的强度值与中心像素存在显著差异,那么该点将被标记为潜在角点。然后,通过包含所有邻域像素的更严格检查来确认角点的存在。对于各个合格角点的判断可以从下图理解:

对于左图中的窗口上方的一个像素点 p ,可以从右图看到其相邻的其他像素点。那么 p 点怎么能算一个足够强度的角点呢?对于 p 点而言它根据自身的颜色和亮度被赋予了一个初始强度值 Ip。用户可以根据自己的需求选择一个合适的阈值 t 。在待测试像素周围选取一个包含 16 个像素的圆形区域(这相当于半径为 3 的 Bresenham 圆形)。现在,如果圆形区域 (16 个像素) 中存在一组 n 个连续像素,它们全都比 Ip + t 亮,或者全都比 Ip - t 暗,那么像素 p 就是角点。为了提高算法速度,首先将圆形中的像素 1、5、9 和 13 的强度与 Ip 进行比较。从上图可以明显看出,这四个像素中的至少三个应该满足阈值标准,这样才能存在关键点。如果四個像素值 (I1, I5, I9, I13) 中至少有三个不在 Ip + t 的上方或下方,则 p 不是关键点(角点)。在这种情况下,将像素 p 作为可能的关键点拒绝。否则,如果至少有三个像素高于或低于 Ip + t,则检查所有 16 个像素,并查看是否有 12 个连续像素符合标准。符合上述的像素点就被FAST函数判定成了合格的角点,后续对图像中的每个像素点都进行同样的操作即可判断出每个角点所在的位置。
FAST函数找到了每个角点的位置后,BRIEF函数会选取图像中的关键点及其周围的小块区域 (局部图像块)。 接着,在局部图像块内,BRIEF 会定义一系列简单的测试,例如比较相邻像素的强度值 (较暗或较亮)。 基于这些测试的结果,BRIEF 生成一个由 0 和 1 组成的二进制字符串,称为描述符。描述符中的每一位对应一个测试,0 代表测试点较暗,1 代表较亮。BRIEF函数的逻辑描述可以简写成如下方程:

巧妙之处在于测试的选取经过精心设计,使得 BRIEF 描述符能够捕获关键点周围的局部图像结构信息。 即使图像发生光照变化、几何形变等轻微扰动,BRIEF 描述符仍能保持相对稳定,展现出良好的鲁棒性。 最后,在进行关键点匹配时,BRIEF 描述符的相似度可以通过汉明距离(Hamming Distance)进行计算。汉明距离计算简单高效,进一步提升了算法的整体效率。
🍞四.使用方式
下面会基于 Ubuntu 22.04 和 ROS2 安装相应的包后用 Tello 的摄像头来运行 ORBSLAM3:
-
首先安装 ORBSLAM3,去到 ORBSLAM3 github 官网下载并构建最新的 ORBSLAM3 函数。
安装 ROS2 Humble(Robot Operating System 2) 和其相应的依赖包,并运行测试程序确保其可以正常运行。 -
把 Tello ROS2 github 的 ROS2 工作空间下载下来并构造其环境。
-
把作为 ROS2 和 ORBSLAM3 的连接包 ORBSLAM3 ROS2 Wrapper 下载下来并构造其环境。
一切准备就绪后先打开 Tello 无人机,并在 Ubuntu 系统里连接上 Tello 的 WiFi。 -
在 Tello ROS2 的工作环境里运行代码:
colcon build --packages-select tello_msg
colcon buildsoure install/setup.bash
ros2 launch src/launch.py
-
进入下载并构建好的 ORBSLAM3 文件夹里,找到 ORBvoc.txt 和在路径
-
/ORB_SLAM3/Examples/Monocular 下的 EuRoC.yaml 文件并复制他们的绝对路径。
-
在 ORBSLAM3 ROS2 Wrapper 的工作环境里运行代码:
colcon build --packages-select orbslam3
colcon buildsource install/setup.bash
ros2 run orbslam3 mono <ORBvoc.txt的绝对路径> <EuRoC.yaml的绝对路径>
上述步骤运行完毕后 ROS2 会调用 ORBSLAM3 里的函数,并对 Tello 提供的摄影图像进行方位和姿态判断,可以拿着 Tello 无人机绕房间走一圈验证定位结果。
🫓总结
综上,我们基本了解了“一项全新的技术啦” 🍭 ~~
恭喜你的内功又双叒叕得到了提高!!!
感谢你们的阅读😆
后续还会继续更新💓,欢迎持续关注📌哟~
💫如果有错误❌,欢迎指正呀💫
✨如果觉得收获满满,可以点点赞👍支持一下哟~✨
【传知科技 – 了解更多新知识】
相关文章:
⌈ 传知代码 ⌋ Visual SLAM函数
💛前情提要💛 本文是传知代码平台中的相关前沿知识与技术的分享~ 接下来我们即将进入一个全新的空间,对技术有一个全新的视角~ 本文所涉及所有资源均在传知代码平台可获取 以下的内容一定会让你对AI 赋能时代有一个颠覆性的认识哦&#x…...
Vue组件之间的通信
一、通信方式 Props 和 Events:通过父组件传递 props 给子组件,子组件使用 $emit 发送事件到父组件。Event Bus:使用一个中央事件总线来跨组件通信。Vuex:使用 Vuex 进行全局状态管理,以便在任何组件间共享状态。Prov…...
【AI 绘画】模型转换与快速生图(基于diffusers)
AI 绘画- 模型转换与快速生图(基于diffusers) 1. 本章介绍 本次主要展示一下不同框架内文生图模型转换,以及快速生成图片的方法。 SDXL文生图 2. sdxl_lightning基本原理 模型基本原理介绍如下 利用蒸馏方法获取小参数模型。首先&#x…...
甄选范文“论软件设计方法及其应”软考高级论文系统架构设计师论文
论文真题 软件设计(Software Design,SD)根据软件需求规格说明书设计软件系统的整体结构、划分功能模块、确定每个模块的实现算法以及程序流程等,形成软件的具体设计方案。软件设计把许多事物和问题按不同的层次和角度进行抽象,将问题或事物进行模块化分解,以便更容易解决…...
leetcode线段树(2940. 找到 Alice 和 Bob 可以相遇的建筑)
前言 经过前期的基础训练以及部分实战练习,粗略掌握了各种题型的解题思路。现阶段开始专项练习。 描述 给你一个下标从 0 开始的正整数数组 heights ,其中 heights[i] 表示第 i 栋建筑的高度。 如果一个人在建筑 i ,且存在 i < j 的建筑…...
用于不平衡医疗数据分类的主动SMOTE
一、主动学习如何应用于不平衡数据的处理 首先,主动SMOTE不是像经典的SMOTE那样从训练集中随机选择一个样本作为生成合成样本的轴心点,而是通过不确定性和多样性采样来智能地进行样本选择,这是主动学习的两种技术。 在数据不平衡的情况下&…...
linux文件更新日期与系统日期比较
项目说明: 要获取linux系统中某目录下最新文件的修改时间并与当前系统时间进行比较,可以使用以下步骤: 使用 ls 命令获取最新文件的修改时间。 使用 date 命令获取当前时间。 计算时间差并打印结果。 实例脚本如下: #!/bin/…...
leetCode - - - 哈希表
目录 1.模拟行走机器人(LeetCode 874) 2.数组的度(LeetCode 697) 3.子域名访问次数(LeetCode 811) 4.字母异位词分组(LeetCode 49) 5.小结 1.常见的哈希表实现 2.遍历Map 1.模…...
NGINX自动清理180天之前的日志
需求描述 日志每天会以天为单位产生一个日志,不清理的话会越来越多。这里写一个Lua自定定时清理日志目录下的日志文件。 依赖安装 安装 lfs 模块 yum install luarocks yum install lua-develluarocks install luafilesystem 创建模拟旧文件 创建了一个1月的旧…...
jackson 轻松搞定接口数据脱敏
一、简介 实际的业务开发过程中,我们经常需要对用户的隐私数据进行脱敏处理,所谓脱敏处理其实就是将数据进行混淆隐藏,例如下图,将用户的手机号、地址等数据信息,采用*进行隐藏,以免泄露个人隐私信息。 如…...
Nginx 正则表达式与rewrite
目录 一、正则表达式 二、rewrite 2.1 rewrite简述 2.2 rewrite 跳转 2.3 rewrite 执行顺序 2.4 rewrite 语法格式 三、location 3.1 location 类别 3.2 location常用匹配规则 3.3 location优先级 3.4 示例说明 3.5 匹配规则总结 3.6 三个匹配规则定义 四、实战…...
tekton什么情况下在Dockerfile中需要用copy
kaniko配置如下 如果docker中的workDir跟tekton中的workDir不一致需要copy。也可以通过mv,cp达到类似效果...
第九届世界渲染大赛在哪里提交作品呢?
自第九届世界渲染大赛开放投稿以来,已经过去了10天。在这段时间里,众多CG爱好者已经完成了他们的动画创作。然而,许多参赛者对于如何提交他们的作品仍然感到困惑。接下来,让我们一起了解具体的投稿流程和入口,确保每位…...
fastjson(autoType)反序列化漏洞
1. 温少和他的fastjson 阿里巴巴的 FastJSON,也被称为 Alibaba FastJSON 或阿里巴巴 JSON,是一个高性能的 Java JSON 处理库,用于在 Java 应用程序中解析和生成 JSON 数据。FastJSON 以其卓越的性能和功能丰富的特点而闻名,并在…...
Java入门基础16:集合框架1(Collection集合体系、List、Set)
集合体系结构 Collection是单列集合的祖宗,它规定的方法(功能)是全部单列集合都会继承的。 collection集合体系 Collection的常用方法 package com.itchinajie.d1_collection;import java.util.ArrayList; import java.util.HashSet;/* * 目…...
Qt如何调用接口
在Qt中,你可以使用QNetworkAccessManager类来调用API。以下是一个简单的示例: cpp #include <QCoreApplication> #include <QNetworkAccessManager> #include <QNetworkRequest> #include <QNetworkReply> int main(int arg…...
Android14之解决编译libaaudio.so报错问题(二百二十七)
简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 新书发布:《Android系统多媒体进阶实战》🚀 优质专栏: Audio工程师进阶系列…...
【专题】2024年7月人工智能AI行业报告合集汇总PDF分享(附原数据表)
原文链接:https://tecdat.cn/?p37350 随着人工智能技术的飞速发展,AI已经成为当今时代的重要驱动力。本报告将聚焦于人工智能AI行业的最新动态,涵盖客户服务、体验营销、资产管理以及国产AI大模型应用等多个领域。通过深入研究和分析,我们…...
干货分享|如何使用Stable Diffusion打造会说话的数字人?
数字人已不是什么新鲜名词了。在许多领域,尤其是媒体和娱乐领域,经常可以看到卡通形象的人物或逼真的虚拟主持人。在Stable Diffusion中,我们可以上传一段录制好的音频文件,然后使用SadTalker插件,将音频和图片相结合&…...
OrangePi AIpro学习4 —— 昇腾AI模型推理 C++版
目录 一、ATC模型转换 1.1 模型 1.2 ATC工具 1.3 实操模型转换 1.4 使用ATC工具时的一些关键注意事项 1.5 ATC模型转换命令举例 二、运行昇腾AI模型应用样仓程序 2.1 程序目录 2.2 下载模型和模型转换 2.3 下载图片和编译程序 2.4 解决报错 2.5 运行程序 三、运行…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
