大语言模型(LLMs)Tokenizers详解
Tokenizers是大语言模型(Large Language Models,LLMs)中用于将文本分割成基本单元(tokens)的工具。这些工具不仅影响模型的输入表示,还直接影响模型的性能和效率。以下是对Tokenizers的详细解释:
1. Tokenizers的作用
Tokenizers的主要作用是将自然语言文本转换为模型可以处理的数字形式。具体来说,Tokenizers执行以下任务:
- 分割文本:将输入文本分割成有意义的单元(tokens)。
- 编码tokens:将每个token映射到一个唯一的整数ID。
- 生成嵌入:将整数ID转换为连续的向量(embeddings),作为模型的输入。
2. Tokenizers的类型
根据分割策略的不同,Tokenizers可以分为以下几种类型:
2.1 基于空格的Tokenizers
最简单的Tokenizers类型,直接按空格分割文本。这种方法简单快速,但无法处理复合词和未登录词。
from transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
tokens = tokenizer.tokenize("I love natural language processing.")
print(tokens)
# 输出: ['i', 'love', 'natural', 'language', 'processing', '.']
2.2 规则基础的Tokenizers
使用预定义的规则分割文本,如去除标点符号、处理大小写等。这种方法比基于空格的Tokenizers更灵活,但仍然有限。
from nltk.tokenize import RegexpTokenizertokenizer = RegexpTokenizer(r'\w+')
tokens = tokenizer.tokenize("I love natural language processing.")
print(tokens)
# 输出: ['I', 'love', 'natural', 'language', 'processing']
2.3 子词Tokenizers
子词Tokenizers将文本分割成子词单元,如字节对编码(BPE)、WordPiece和Unigram Language Model。这些方法可以有效处理未登录词,提高模型的泛化能力。
2.3.1 字节对编码(BPE)
通过统计频率合并频繁出现的字节对,逐步构建子词单元。
from transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained("gpt2")
tokens = tokenizer.tokenize("I love natural language processing.")
print(tokens)
# 输出: ['I', 'Ġlove', 'Ġnatural', 'Ġlanguage', 'Ġprocessing', '.']
2.3.2 WordPiece
类似于BPE,但选择合并操作时考虑对语言模型的增益。BERT模型使用WordPiece Tokenizer。
from transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
tokens = tokenizer.tokenize("I love natural language processing.")
print(tokens)
# 输出: ['i', 'love', 'natural', 'language', 'processing', '.']
2.3.3 Unigram Language Model
基于语言模型的方法,通过优化token集来最大化似然。
from transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained("xlnet-base-cased")
tokens = tokenizer.tokenize("I love natural language processing.")
print(tokens)
# 输出: ['▁I', '▁love', '▁natural', '▁language', '▁processing', '.']
3. Tokenizers的实现
许多大预言模型使用专门的Tokenizers库,如Hugging Face的Transformers库。这个库提供了多种Tokenizers的实现,支持不同的分割策略和模型。
from transformers import AutoTokenizer# 加载预训练的BERT Tokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")# 分割文本
tokens = tokenizer.tokenize("I love natural language processing.")
print(tokens)
# 输出: ['i', 'love', 'natural', 'language', 'processing', '.']# 编码tokens
encoded_input = tokenizer.encode("I love natural language processing.")
print(encoded_input)
# 输出: [101, 1045, 2293, 2784, 3693, 10118, 1012, 102]
4. Tokenizers的影响
Tokenizers的选择和实现对模型的性能有显著影响:
- 词汇量:更大的词汇量可以提高模型的表达能力,但也会增加计算复杂度。
- 未登录词处理:有效的Tokenizers策略可以更好地处理未登录词,提高模型的泛化能力。
- 序列长度:合理的Tokenizers可以减少输入序列的长度,从而提高计算效率和内存使用。
5. 示例
假设我们有一个简单的句子:“I love natural language processing.”
使用不同的Tokenizers,这个句子可能会被分割为:
- 基于空格的分割:["I", "love", "natural", "language", "processing."]
- WordPiece(如BERT所用):["i", "love", "natural", "language", "processing", "."]
- BPE(如GPT所用):["I", "Ġlove", "Ġnatural", "Ġlanguage", "Ġprocessing", "."]
总结
Tokenizers是大预言模型处理和生成文本的基础。通过将文本分割为有意义的单元,模型可以学习语言的结构和语义,从而实现复杂的语言理解和生成任务。选择合适的Tokenizers方法和策略对于提高模型的性能和效率至关重要。
相关文章:
大语言模型(LLMs)Tokenizers详解
Tokenizers是大语言模型(Large Language Models,LLMs)中用于将文本分割成基本单元(tokens)的工具。这些工具不仅影响模型的输入表示,还直接影响模型的性能和效率。以下是对Tokenizers的详细解释:…...

分支-快排/归并---1
目录 1.排序数组 2.数组中的第K个最大元素 3.最小k个数 4.排序数组(归并) 5.数组中的逆序对 6.计算右侧小于当前元素的个数 7. 翻转对 1.排序数组 快排的写法有很多,这里我采取了相对快的三路划分加随机基准值。 三路划分,是…...

代码随想录训练营 Day32打卡 动态规划 part01 理论基础 509. 斐波那契数 70. 爬楼梯 746. 使用最小花费爬楼梯
代码随想录训练营 Day32打卡 动态规划 part01 一、 理论基础 动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的。 例如:有N件物品和一个最多能背重量为W 的背包…...

【智能流体力学】剖析ANSYS Fluent材料属性设定与边界条件
目录 一、材料属性设定**1. 材料属性的概述****功能****2. 材料属性的类型****标准材料库****多相流****燃烧模型****传热模型****辐射模型****3. 属性设置与函数****4. 自定义材料数据库****5. Granta数据库支持**二、边界条件**1. 通用边界条件****Pressure Inlet (压力-入口…...

微信小程序反编译工具
目录 介绍 工程结构还原 微信开发者工具运行 如何查看当前运行版本? 开启小程序F12 重新打包运行 效果示例 安装 用法 参数说明 获取微信小程序AppID 文件夹名即为AppID 下载地址 介绍 纯Golang实现,一个用于自动化反编译微信小程序的工具,小程序安全利器, 自…...
线程基本概念
一、进程的结束 wait(阻塞) 一般不做额外的事情 wait(非阻塞) 逻辑不受影响(必须套在循环中) wait作用:1.获取子进程退出状态 2.回收资源 传参为指针:被调修改主调 获取退出状态值: WIFEXITED 判断是否…...
在SpringBoot中执行后台任务
在 Spring Boot 中执行后台任务通常涉及到使用线程池和定时任务。Spring Boot 提供了多种方式来实现后台任务,包括使用 Scheduled 注解、ThreadPoolTaskExecutor 和 ExecutorService。 下面我将详细介绍如何使用这些方法来实现后台任务。 使用 Scheduled 注解 Sp…...

【网络】UDP回显服务器和客户端的构造,以及连接流程
回显服务器(Echo Server) 最简单的客户端服务器程序,不涉及到业务流程,只是对与 API 的用法做演示 客户端发送什么样的请求,服务器就返回什么样的响应,没有任何业务逻辑,没有进行任何计算或者…...

【智能流体力学】ANSYS Fluent工作流程设置、求解和后处理详解
目录 一、设置阶段1. **模型****功能** :**详细说明及原理** :2. **材料****功能** :**详细说明及原理** :3. **单元区域条件****功能** :**详细说明及原理** :4. **边界条件****功能** :**详细说明及原理** :5. **网格交界面****功能** :**详细说明及原理** :6. **动…...

最新UI六零导航系统源码 | 多模版全开源
六零导航页 (LyLme Spage) 致力于简洁高效无广告的上网导航和搜索入口,支持后台添加链接、自定义搜索引擎,沉淀最具价值链接,全站无商业推广,简约而不简单。 使用PHPMySql,增加后台管理 多模板选择,支持在…...

K8S中使用英伟达GPU —— 筑梦之路
前提条件 根据不同的操作系统,安装好显卡驱动,并能正常识别出来显卡,比如如下截图: GPU容器创建流程 containerd --> containerd-shim--> nvidia-container-runtime --> nvidia-container-runtime-hook --> libnvid…...

2024-2025年最值得选的Java计算机毕业设计选题大全:800个热门选题
一、前言 博主介绍: ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ…...

libnl教程(2):发送请求
文章目录 前言示例示例代码构造请求创建套接字发送请求 简化示例 前言 前置阅读要求:libnl教程(1):订阅内核的netlink广播通知 本文介绍,libnl如何向内核发送请求。这包含三个部分:构建请求;创建套接字;发送请求。 …...

【软件测试】功能测试理论基础
目录 项目的测试流程🏴 需求评审 评审形式 测试人员在需求评审中职责 测试计划与方案 测试计划 问题 测试方案🏴 测试计划与方案的对比 功能测试设计🏴 测试设计的步骤 项目的测试流程🏴 作用: 有序有效开展…...

玩机进阶教程-----回读 备份 导出分区来制作线刷包 回读分区的写入与否 修改xml脚本
很多工作室需要将修改好的系统导出来制作线刷包。前面分享过很多制作线刷包类的教程。那么一个机型中有很多分区。那些分区回读后要写入。那些分区不需要写入。强写有可能会导致不开机 不进系统的故障。首先要明白。就算机型全分区导出后在写回去 都不一定可以开机进系统。那么…...
MongoDB 插入文档
MongoDB 插入文档 MongoDB 是一个流行的 NoSQL 数据库,它使用文档存储数据。在 MongoDB 中,数据以 BSON(Binary JSON)格式存储,这是一种二进制表示的 JSON 格式。MongoDB 提供了灵活的数据模型,使得插入和查询文档变得非常简单。本文将详细介绍如何在 MongoDB 中插入文档…...
【内网】服务器升级nginx1.17.0
今天用rpm包升级内网nginx版本,上来就给我报错 警告:nginx-1.27.0-2.el7.ngx.x86_64.rpm: 头V4 RSA/SHA256 Signature, 密钥 ID 7bd9bf62: NOKEY 错误:依赖检测失败: libcrypto.so.10()(64bit) 被 nginx-1:1.27.0-2.el7.ngx.x…...

歌曲爬虫下载
本次编写一个程序要爬取歌曲音乐榜https://www.onenzb.com/ 里面歌曲。有帮到铁子的可以收藏和关注起来!!!废话不多说直接上代码。 1 必要的包 import requests from lxml import html,etree from bs4 import BeautifulSoup import re impo…...

transformer-explainer
安装和启动 找到这个项目,然后装好了。 这个项目的目的如名字。 https://github.com/poloclub/transformer-explainerTransformer Explained: Learn How LLM Transformer Models Work with Interactive Visualization - poloclub/transformer-explainerhttps:/…...

C#中的S7协议
S7协议-S7COMM S7COMM 进行写 CTOP->PDU type已知枚举值 0X0E连接请求0x0d连接确认0x08断开请求0x0c断开确认0x05拒绝访问0x01加急数据0x02加急数据确认0x04用户数据0x07TPDU错误0x0f数据传输 S7Header->ROSCTR已知枚举值 0X01JOB REQUEST。主站发送请求0x02Ack。从站…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...

push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测
uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...
日常一水C
多态 言简意赅:就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过,当子类和父类的函数名相同时,会隐藏父类的同名函数转而调用子类的同名函数,如果要调用父类的同名函数,那么就需要对父类进行引用&#…...