Python实现词频统计
词频统计是自然语言处理的基本任务,针对一段句子、一篇文章或一组文章,统计文章中每个单词出现的次数,在此基础上发现文章的主题词、热词。
1. 单句的词频统计
思路:首先定义一个空字典my_dict,然后遍历文章(或句子),针对每个单词判断是否在字典my_dict的key中,不存在就将该单词当作my_dict的key,并设置对应的value值为1;若已存在,则将对应的value值+1。
#统计单句中每个单词出现的次数
news = "Xi, also general secretary of the Communist Party of China (CPC) Central Committee and chairman of the Central Military Commission, made the remarks while attending a voluntary tree-planting activity in the Chinese capital's southern district of Daxing."
def couWord(news_list): ##定义计数函数 输入:句子的单词列表 输出:单词-次数 的字典my_dict = {} #空字典 来保存单词出现的次数for v in news_list:if my_dict.get(v):my_dict[v] += 1else:my_dict[v] = 1return my_dict
print(couWord(news.split ()))
输出
{‘Xi,’: 1, ‘also’: 1, ‘general’: 1, ‘secretary’: 1, ‘of’: 4, ‘the’: 4, ‘Communist’: 1, ‘Party’: 1, ‘China’: 1, ‘(CPC)’: 1, ‘Central’: 2, ‘Committee’: 1, ‘and’: 1, ‘chairman’: 1, ‘Military’: 1, ‘Commission,’: 1, ‘made’: 1, ‘remarks’: 1, ‘while’: 1, ‘attending’: 1, ‘a’: 1, ‘voluntary’: 1, ‘tree-planting’: 1, ‘activity’: 1, ‘in’: 1, ‘Chinese’: 1, “capital’s”: 1, ‘southern’: 1, ‘district’: 1, ‘Daxing.’: 1}
以上通过couWord方法实现了词频的统计,但是存在以下两个问题。
(1)未去除stopword
输出结果中保护’also’、‘and’、'in’等stopword(停止词),停止词语与文章主题关系不大,需要在词频统计等各类处理中将其过滤掉。
(2)未根据出现次数进行排序
根据每个单词出现次数进行排序后,可以直观而有效的发现文章主题词或热词。
改进后的couWord函数如下:
def couWord(news_list,word_list,N):#输入 文章单词的列表 停止词列表 输出:Top N的单词my_dict = {} #空字典 来保存单词出现的次数for v in news_list:if (v not in word_list): # 判断是否在停止词列表中if my_dict.get(v):my_dict[v] += 1else:my_dict[v] = 1topWord = sorted(zip(my_dict.values(),my_dict.keys()),reverse=True)[:N] return topWord
加载英文停止词列表:
stopPath = r'Data/stopword.txt'
with open(stopPath,encoding = 'utf-8') as file:word_list = file.read().split() #通过read()返回一个字符串函数,再将其转换成列表
print(couWord(news.split(),word_list,5))
输出
[(2, ‘Central’), (1, ‘voluntary’), (1, ‘tree-planting’), (1, ‘southern’), (1, ‘secretary’)]
2. 文章的词频统计
(1)单篇文章词频统计
通过定义读取文章的函数,对其进行大小写转换等处理,形成输入文章的单词列表。
def readFile(filePath): #输入: 文件路径 输出:字符串列表with open(filePath,encoding = 'utf-8') as file:txt = file.read().lower() #返回一个字符串,都是小写myTxt = txt.split() #转换成列表 return myTxt
filePath = r'Data/news/1.txt'
new_list = readFile(filePath) #读取文件
print(couWord(new_list,word_list,5))
输出
[(17, ‘rights’), (14, ‘human’), (8, ‘united’), (7, ‘china’), (6, ‘resolution’)]
(2)多篇文章词频统计
需要使用os.listdir方法读取文件夹下的文件列表,然后对文件逐一进行处理。
import os
folderPath = r'Data/news' #文件夹路径
tmpFile = os.listdir(folderPath)
allNews = []
for file in tmpFile: #读取文件newsfile = folderPath + '//' + file #拼接完整的文件路径 \\ 转义字符allNews += readFile(newsfile) #把所有的字符串列表拼接到allText中print(couWord(allNews,word_list,5))
输出
[(465, ‘china’), (323, ‘chinese’), (227, ‘xi’), (196, “china’s”), (134, ‘global’)]
(3)中文文章的处理
对于中文文章的词频统计,首先要使用jieba等分词器对文章进行分词,并且加载中文的停止词列表,再进行词频统计。
相关文章:
Python实现词频统计
词频统计是自然语言处理的基本任务,针对一段句子、一篇文章或一组文章,统计文章中每个单词出现的次数,在此基础上发现文章的主题词、热词。 1. 单句的词频统计 思路:首先定义一个空字典my_dict,然后遍历文章…...
微信小程序面试题(day08)
文章目录微信小程序自定义组件的使用?微信小程序事件通道的使用?微信小程序如何使用vant组件库?微信小程序自定义组件父传子子传父?微信小程序自定义组件生命周期有哪些?微信小程序授权登录流程?web-view。…...
最强的Python可视化神器,你有用过么?
数据分析离不开数据可视化,我们最常用的就是Pandas,Matplotlib,Pyecharts当然还有Tableau,看到一篇文章介绍Plotly制图后我也跃跃欲试,查看了相关资料开始尝试用它制图。 1、Plotly Plotly是一款用来做数据分析和可视…...
Ubuntu使用vnc远程桌面【远程内网穿透】
文章目录1.前言2.两台互联电脑的设置2.1 Windows安装VNC2.2 Ubuntu安装VNC2.3.Ubuntu安装cpolar3.Cpolar设置3.1 Cpolar云端设置3.2.Cpolar本地设置4.公网访问测试5.结语1.前言 记得笔者刚刚开始接触电脑时,还是win95/98的时代,那时的电脑桌面刚迈入图形…...
【C++】map、set、multimap、multiset的介绍和使用
我讨厌世俗,也耐得住孤独。 文章目录一、键值对二、树形结构的关联式容器1.set1.1 set的介绍1.2 set的使用1.3 multiset的使用2.map2.1 map的介绍2.2 map的使用2.3 multimap的使用三、两道OJ题1.前K个高频单词(less<T>小于号是小的在左面升序&…...
css学习14(多媒体查询)
目录 多媒体查询 语法 示例代码 通用媒体查询 媒体功能参考列表 多媒体查询 CSS的媒体查询是一种CSS的技术,它可以根据不同的设备类型、屏幕尺寸、方向、分辨率等条件来应用不同的CSS样式,从而为不同的设备和屏幕提供最佳的浏览体验。这样ÿ…...
【C++进阶】C++11(中)左值引用和右值引用
文章目录左值引用左值引用的概念左值引用的使用右值引用右值引用的概念右值引用的使用左右值相互引用左值引用对右值进行引用右值引用对左值进行引用右值引用使用场景和意义左值引用的优势左值引用的短板右值引用的优势完美转发模板万能引用完美转发实际运用场景左值引用 左值…...
Python中的生成器【generator】总结,看看你掌握了没?
人生苦短,我用python python 安装包资料:点击此处跳转文末名片获取 1.实现generator的两种方式 python中的generator保存的是算法, 真正需要计算出值的时候才会去往下计算出值。 它是一种惰性计算(lazy evaluation)。 要创建一个…...
MD5加密竟然不安全,应届生表示无法理解?
前言 近日公司的一个应届生问我,他做的一个毕业设计密码是MD5加密存储的,为什么密码我帮他调试的时候,我能猜出来明文是什么? 第六感,是后端研发的第六感! 正文 示例,有个系统,前…...
【Linux】虚拟地址空间
进程地址空间一、引入二、虚拟地址与物理内存的联系三、为什么要有虚拟地址空间一、引入 对于C/C程序,我们眼中的内存是这样的: 我们利用这种对于与内存的理解看一下下面这段代码: 运行结果: 观察父子进程中 val 变量的值&…...
四平方和题解(二分习题)
四平方和 暴力做法 Y总暴力做法,蓝桥云里能通过所有数据 总结:暴力也分好坏,下面这份代码就是写的好的暴力 如何写好暴力:1. 按组合枚举 2. 写好循环结束条件,没必要循环那么多次 #include<iostream> #include<cmath>…...
一篇文章搞定js正则表达式
我们测试正则表达式是否正确的方法有很多,例如通过正则表达式找到拼配的字符串: 在vscode编辑器中点击搜索框中的第三个按钮就可以实现: 或者 在浏览器中的控制台也可以实现: 我们可以通过下面的在线网站来测试你写的正则是否正确…...
[数据结构] 用两个队列实现栈详解
文章目录 一、队列实现栈的特点分析 1、1 具体分析 1、2 整体概括 二、队列模拟实现栈代码的实现 2、1 手撕 队列 代码 queue.h queue.c 2、2 用队列模拟实现栈代码 三、总结 🙋♂️ 作者:Ggggggtm 🙋♂️ 👀 专栏࿱…...
官宣|Apache Flink 1.17 发布公告
Apache Flink PMC(项目管理委员)很高兴地宣布发布 Apache Flink 1.17.0。Apache Flink 是领先的流处理标准,流批统一的数据处理概念在越来越多的公司中得到认可。得益于我们出色的社区和优秀的贡献者,Apache Flink 在 Apache 社区…...
动态内存管理+动态通讯录【C进阶】
文章目录为什么存在动态内存分配❓👉动态内存函数👈malloc&freecallocrealloc❌常见的动态内存错误❌练习题🫠C/C程序的内存开辟🤔柔性数组柔性数组的特点柔性数组的优势:star:动态通讯录:star:初始化添加销毁为什么存在动态内…...
基于pytorch+Resnet101加GPT搭建AI玩王者荣耀
本源码模型主要用了SamLynnEvans Transformer 的源码的解码部分。以及pytorch自带的预训练模型"resnet101-5d3b4d8f.pth"本资源整理自网络,源地址:https://github.com/FengQuanLi/ResnetGPT注意运行本代码需要注意以下几点 注意!&a…...
多线程控制讲解与代码实现
多线程控制 回顾一下线程的概念 线程是CPU调度的基本单位,进程是承担分配系统资源的基本单位。linux在设计上并没有给线程专门设计数据结构,而是直接复用PCB的数据结构。每个新线程(task_struct{}中有个指针都指向虚拟内存mm_struct结构&am…...
清晰概括:进程与线程间的区别的联系
相关阅读: 🔗通俗简介:操作系统之进程的管理与调度🔗如何使用 jconsole 查看Java进程中线程的详细信息? 目录 一、进程与线程 1、进程 2、线程 二、进程与线程之间的区别和联系 1、区别 2、联系 一、进程与线程 …...
自定义类型 (结构体)
文章目录📬结构体的声明🔎1.结构的基础知识🔎2.结构的声明🔎3.特殊的声明🔎4.结构的自引用🔎5.结构体变量的定义和初始化🔎6.结构体内存对齐🔎7.修改默认对齐数🔎8.结构体…...
第14届蓝桥杯STEMA测评真题剖析-2023年3月12日Scratch编程初中级组
[导读]:超平老师的《Scratch蓝桥杯真题解析100讲》已经全部完成,后续会不定期解读蓝桥杯真题,这是Scratch蓝桥杯真题解析第113讲。 蓝桥杯选拔赛现已更名为STEMA,即STEM 能力测试,是蓝桥杯大赛组委会与美国普林斯顿多…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
