当前位置: 首页 > news >正文

【生成式人工智能-十一一个不修改模型就能加速语言模型生成的方法】

一个加速语言模型生成的方法

  • 现在语言模型的一个弊端
  • speculative decoding
    • 预言家预测的问题
  • speculative decoding 模块的实现方法
    • NAT Non-autoregressive
    • 模型压缩
    • 使用搜索引擎
  • 一些更复杂些的speculative decoding 实现方式

speculative decoding 是一个适用于目前生成模型的加速方法,不需要修改模型,就可以大大加速模型的生成速度。

现在语言模型的一个弊端

现在语言模型用autoregressive decoding方法生成输出内容的时候,由于其底层实现机制是decoder按照顺序一步步生成的,没有办法并行,所以生成的速度很慢。

克服它的一个方法就是speculative decoding,模型之外,外挂一个预言家,多预言一个就加速一倍。

speculative decoding

现在就是要多加上一个speculative decoding模块,它生成速度很快,它的所用就是用来预测语言模型下一个要生成的是什么。这样就可以把语言模型原本串行的操作,变成并行的。原本语言模型的输入的,和 输入加 speculative decoding 预测的下一个token 一起输入到语言模型里,这样语言模型就一次可以并行处理两个输入,生成两个输出了,如图:
在这里插入图片描述
还是用机器翻译来举个例子:

  • 原本的输入形式:

输入:机器学习,输出 machine
输入: 机器学习 ,merchine,输出 learning
输入 :机器学习 ,merchine,输出 end

  • 加上预言模块后:
    输入一次变成两个 也就是原本输入中的上面的前两条一起输入给语言模型,也就是:
    不仅输入

机器学习,

,还要用 speculative decoding 预言到的machine ,形成

机器学习,machine
上面两个一起输入给语言模型,让它输出。

如果 speculative decoding一次预测一个,那么速度就可以提升为原来的2倍,一次预测2个token,就可以提升3倍:
在这里插入图片描述
看到这里你i肯定会想,难道预言家不会犯错么,上面一次预测的这两个token万一有错误呢?

预言家预测的问题

预言家必然不可能都预测准确,要不然语言模型还有什么用,下面我们看看预测错误会出现什么情况:
假如正确的输出是一个红一个黄的token,但是预言家预预测出了一个红一个灰的token,也就是预测错误了一个,那情况就如下:
在这里插入图片描述
这情况下,第三步是错误,但是前两步是正确的呢,速度还是提升了。极端的,预言家全部都没预测对,但是不影响原来一个token的输出,只是多了一点预言家的预测时间,和多了一些运算资源,但是几乎可以忽略。
总之,好处多余坏处。那么预言家 speculative decoding 如何实现呢

speculative decoding 模块的实现方法

speculative decoding 诉求就是速度快,可以犯点错,下面有三个方法可以实现这个诉求

NAT Non-autoregressive

我们可以用 Non-autoregressive 来实现这个,它的实现方式就是生成速度快,但是生成的没那么准确。
在这里插入图片描述
把输入放到NAT的模型里面,同时预测多个输出

模型压缩

可以压缩模型,比如模型量化等很多方法可以压缩模型,用小模型去作为预言家

使用搜索引擎

可以直接联网输入,把搜索到的拿出来作为预言的token

一些更复杂些的speculative decoding 实现方式

一个预言家预测准确的情况无法确定,但是我们可以放多个预言家,这样会耗费计算资源,但是预言准确的命中率会大大提升。

相关文章:

【生成式人工智能-十一一个不修改模型就能加速语言模型生成的方法】

一个加速语言模型生成的方法 现在语言模型的一个弊端speculative decoding预言家预测的问题 speculative decoding 模块的实现方法NAT Non-autoregressive模型压缩使用搜索引擎 一些更复杂些的speculative decoding 实现方式 speculative decoding 是一个适用于目前生成模型的加…...

Rust 错误处理

Rust 错误处理 Rust 是一种系统编程语言,以其内存安全、高并发和实用性而著称。在 Rust 中,错误处理是一个核心概念,它通过提供 Result 和 Option 类型来鼓励开发者显式地处理可能出现的错误,而不是依赖异常机制。本文将深入探讨 Rust 中的错误处理机制,包括 Result 和 O…...

程序与进程 linux系统

程序与进程 程序 ( program ): 通常为 binary program ,放置在储存媒体中(如硬盘、光盘、软盘、磁带等), 为实体文件的型态存在;二进制文件,比如静态 /bin/date…...

使用MongoDB构建AI:Story Tools Studio将生成式AI引入Myth Maker AI游戏

Story Tools Studio利用先进的生成式AI技术,打造沉浸式、个性化、无穷尽的情景体验。 Story Tools Studio创始人兼首席执行官Roy Altman表示:“我们的旗舰游戏Myth Maker AI采用的是我们自主研发的、以AI为驱动的专家指导型故事生成器MUSE,它…...

鸿蒙UIAbility组件概述(二)

鸿蒙UIAbility组件概述 UIAbility组件基本用法指定UIAbility的启动页面获取UIAbility的上下文信息 UIAbility组件与UI的数据同步使用EventHub进行数据通信使用AppStorage/LocalStorage进行数据同步 UIAbility组件间交互(设备内)启动应用内的UIAbility启动…...

Oracle(70)如何优化SQL查询?

优化SQL查询是数据库管理的重要部分,旨在提高查询性能,减少响应时间和资源消耗。以下是一些常见的SQL查询优化技术,结合代码示例详细说明。 1. 使用索引 索引是优化查询性能的最常见方法之一。索引可以显著减少数据检索的时间。 示例 假设…...

深度剖析:Jenkins构建任务无法中断的原因及解决方案

个人名片 🎓作者简介:java领域优质创作者 🌐个人主页:码农阿豪 📞工作室:新空间代码工作室(提供各种软件服务) 💌个人邮箱:[2435024119qq.com] &#x1f4f1…...

【YOLO】常用脚本

目录 VOC转YOLO划分训练集、测试集与验证集 VOC转YOLO import os import xml.etree.ElementTree as ETdef convert(size, box):dw 1. / size[0]dh 1. / size[1]x (box[0] box[1]) / 2.0y (box[2] box[3]) / 2.0w box[1] - box[0]h box[3] - box[2]x x * dww w * dwy…...

Springboot IOC DI理解及实现+JUnit的引入+参数配置

一、JavaConfig 我们通常使用 Spring 都会使用 XML 配置,随着功能以及业务逻辑的日益复杂,应用伴随着大量的 XML 配置文件以及复杂的 bean 依赖关系,使用起来很不方便。 在 Spring 3.0 开始,Spring 官方就已经开始推荐使用 Java…...

CeresPCL 最小二乘插值(曲线拟合)

一、简介 在多项式插值时,当数据点个数较多时,插值会导致多项式曲线阶数过高,带来不稳定因素。因此我们可以通过固定幂基函数的最高次数 m(m < n),来对我们要拟合的曲线进行降阶。之前的函数形式就可以变为: 既然是最小二乘问题,那么就仍然可以使用Ceres来进行求解。 …...

【TCP/IP】自定义应用层协议,常见端口号

互联网中&#xff0c;主流的是 TCP/IP 五层协议 5G/4G 上网&#xff0c;是有自己的协议栈&#xff0c;要比 TCP/IP 更复杂&#xff08;能够把 TCP/IP 的一部分内容给包含进去了&#xff09; 应用层 可以代表我们所编写的应用程序&#xff0c;只要应用程序里面用到了网络通信…...

Frida 的下载和安装

首先要安装好 python 环境 安装 frida 和 工具包 pip install frida frida-tools 查看版本&#xff1a; frida --version 16.4.8 然后到 github 上下载对应 server &#xff08; 和frida 的版本一致 16.4.8&#xff09; Releases frida/frida (github.com) 查看手机或…...

后端开发刷题 | 链表内指定区间反转【链表篇】

描述 将一个节点数为 size 链表 m 位置到 n 位置之间的区间反转&#xff0c;要求时间复杂度 O(n)O(n)&#xff0c;空间复杂度 O(1)O(1)。 例如&#xff1a; 给出的链表为 1→2→3→4→5→NULL1→2→3→4→5→NULL, m2,n4 返回 1→4→3→2→5→NULL 数据范围&#xff1a; 链表…...

【NVMe系列-提问页与文章总结页面】

NVMe系列-提问页与文章总结页面 问题汇总NVMe协议是什么&#xff1f;PRP 与 PRP List是做什么的&#xff1f; 已写文章汇总 问题汇总 NVMe协议是什么&#xff1f; PRP 与 PRP List是做什么的&#xff1f; 已写文章汇总...

用生成器函数生成表单各字段

生成器函数生成表单字段是非常合适的用法,避免你要用纯javascript做后台时频繁的制作表单&#xff0c;而不能重复利用 //这里是javascript部分&#xff0c;formfiled.js //生成器函数对字段的处理&#xff0c;让各字段name\className\label\value\placeholder赋值到input的属性…...

【xilinx】O-RAN 无线电接口 - Vivado 2020.1 及更新工具版本的发行说明

描述 记录包含 O-RAN 无线电接口 LogiCORE IP 的发行说明和已知问题&#xff0c;包括以下内容&#xff1a; 一般信息已知和已解决的问题 解决方案 一般信息 可以在以下三个位置找到支持的设备&#xff1a; O-RAN 无线电接口 IP 产品指南&#xff08;需要访问O-RAN 安全站点&…...

结营考试- 算法进阶营地 - DAY11

结营考试 - 算法进阶营地 - DAY11 测评链接&#xff1b; A - 打卡题 考点&#xff1a;枚举&#xff1b; 分析 枚举 a _①_ b _②_ c d&#xff0c;中两个运算符的 3 3 3 种可能性&#xff0c;尝试寻找一种符合要求的答案。 参考代码 #include <bits/stdc.h> usi…...

设计模式: 访问者模式

文章目录 一、介绍二、模式结构三、优缺点1、优点2、缺点 四、应用场景 一、介绍 Visitor 模式&#xff08;访问者模式&#xff09;是一种行为设计模式&#xff0c;它允许在不修改对象结构的前提下&#xff0c;增加作用于一组对象上新的操作。就增加新的操作而言&#xff0c;V…...

selenium底层原理详解

目录 1、selenium版本的演变 1.1、Selenium 1.x&#xff08;Selenium RC时代&#xff09; 1.2、Selenium 2.x&#xff08;WebDriver整合时代&#xff09; 1.3、Selenium 3.x 2、selenium原理说明 3、源码说明 3.1、启动webdriver服务建立连接 3.2、发送操作 1、seleni…...

【Solidity】继承

继承 Solidity 中使用 is 关键字实现继承&#xff1a; contract Father {function getNumber() public pure returns (uint) {return 10;}function getNumber2() public pure virtual returns (uint) {return 20;} }contract Son is Father {}现在 Son 就可以调用 Father 的 …...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...