比较结构加法及其逆运算

在行列可自由变换的平面上有等式
13(3a1+1)=2*4a1+4a2+2*4a3+2*4a4+4*4a12+2*4a14
3a1+1在平面上可能得到6个不同的4点结构,这6个结构的比例为2:1:2:2:4:2.
现在从右向左算,计算4a1,2,3,4,12,14减1的结果,

4(4a1-1)=2*3a3+2*3a1
严格的
| a | b | |||||||||||
| - | - | - | - | - | - | - | - | - | - | - | - | |
| - | - | 1 | - | - | - | - | 1 | - | - | - | - | |
| - | 1 | - | - | - | - | - | 1 | - | - | - | - | |
| - | - | 1 | - | - | - | - | - | 1 | - | - | - | |
| - | - | - | - | - | - | - | - | - | - | - | - | |
| - | - | - | - | - | - | - | - | - | - | - | - | |
| c | d | |||||||||||
| - | - | - | - | - | - | - | - | - | - | - | - | |
| - | 1 | 1 | - | - | - | - | 1 | 1 | - | - | - | |
| - | - | - | - | - | - | - | 1 | - | - | - | - | |
| - | - | 1 | - | - | - | - | - | - | - | - | - | |
| - | - | - | - | - | - | - | - | - | - | - | - | |
| - | - | - | - | - | - | - | - | - | - | - | - |
4a1-1得到的a,b,c,d这4个结构,因为已假设这个空间的行和列可以自由的变换,所以这个空间内只有相对位置关系是不变的,这个空间里没有距离的概念,在这个空间的结构天然的有平移对称性。所以结构a,b可以通过行和列的变换和平移操作变成3a3
| - | - | - | - | - | - |
| - | - | - | - | - | 1 |
| - | - | - | - | 1 | - |
| - | - | - | - | - | 1 |
| - | - | - | - | - | - |
| - | - | - | - | - | - |
同样结构c和d可以通过同样的操作变成3a1
| - | - | - | - | - | - |
| - | - | - | - | 1 | 1 |
| - | - | - | - | 1 | - |
| - | - | - | - | - | - |
| - | - | - | - | - | - |
| - | - | - | - | - | - |
同样有

4(4a2-1)=3a4+3a3+3a5+3a1

4(4a3-1)=3a2+3a3+2*3a1

4(4a4-1)=3a6+3a4+2*3a1

4(4a12-1)=4*3a1

4(4a14-1)=2*3a1+2*3a4
得到表格
| 1 | 2 | 3 | 4 | 5 | 6 | |
| 4a1 | 2 | 2 | ||||
| 4a2 | 1 | 1 | 1 | 1 | ||
| 4a3 | 2 | 1 | 1 | |||
| 4a4 | 2 | 1 | 1 | |||
| 4a12 | 4 | |||||
| 4a14 | 2 | 2 |
考虑系数
| 系数 | 1 | 2 | 3 | 4 | 5 | 6 | |
| 2 | 4a1 | 1 | 1 | ||||
| 1 | 4a2 | 0.25 | 0.25 | 0.25 | 0.25 | ||
| 2 | 4a3 | 1 | 0.5 | 0.5 | |||
| 2 | 4a4 | 1 | 0.5 | 0.5 | |||
| 4 | 4a12 | 4 | |||||
| 2 | 4a14 | 1 | 1 | ||||
| 和 | 8.25 | 0.5 | 1.75 | 1.75 | 0.25 | 0.5 |
13个3a1+1得到2个4a1,因此4a1-1得到1个3a1,1个3a3
4a1,2,3,4,12,14-1得到的3点结构有13个,所以作为3a1+1的逆运算点的数量是守恒的,得到了6个3点结构,3a1,2,3,4,12,14这6个结构的占比是8.25:0.5:1.75:1.75:0.25:0.5
3a1的占比约为63.5%。也就是经过一次逆运算3a1的占比变为初始状态的63.5%,也就是这个过程产生了约36.5%的衍生物。显然如果再一次进行3a1+1再-1的运算3a1的占比会变为0.635*0.635.
所以在这个+1-1的迭代过程中初始结构的占比不守恒,会随着迭代的次数n减小,这里3a1的剩余量约为0.635^n。
现在假设脑中有3个神经元按照3a1的结构排列,这时有一个光信号将导致另一个神经元被激发,并与已知的3个神经元产生联系,为简化计算假设这个平面的行和列可以自由变换,所以第4个神经元的可能分布就只有4a1,2,3,4,12,14这6种可能,初始态3a1形成一个记忆1,末态4点结构构成一个记忆2.现在由记忆2点回忆记忆1,假设这个就是结构减法
| 系数 | 1 | 2 | 3 | 4 | 5 | 6 | 3a1占比 | ||
| 2 | 4a1 | 1 | 1 | 0.5 | |||||
| 1 | 4a2 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | |||
| 2 | 4a3 | 1 | 0.5 | 0.5 | 0.5 | ||||
| 2 | 4a4 | 1 | 0.5 | 0.5 | 0.5 | ||||
| 4 | 4a12 | 4 | 1 | ||||||
| 2 | 4a14 | 1 | 1 | 0.5 |
如果形成的4点结构恰好是4a12则3a1的占比最大为1,如果4点结构为4a2则3a1的占比为0.25.平均3a1的占比为63.5%。所以结构的剩余率就是记忆的保存率?
相关文章:
比较结构加法及其逆运算
在行列可自由变换的平面上有等式 13(3a11)2*4a14a22*4a32*4a44*4a122*4a14 3a11在平面上可能得到6个不同的4点结构,这6个结构的比例为2:1:2:2:4:2. 现在从右向左算,计…...
44.【C语言】指针(重难点)(G)
目录 19.字符指针变量 *定义 *简单说明 *如果是字符串 *像数组一样指定访问常量字符串的字符 *练习 20.数组指针变量 *定义 *格式 *例子 问题1 问题2 *利用指针打印 21.二维数组传参的本质 *回顾 往期推荐 19.字符指针变量 *定义 指向字符的指针变量,用于存储字符…...
746. 使用最小花费爬楼梯-dp3
. - 力扣(LeetCode). - 备战技术面试?力扣提供海量技术面试资源,帮助你高效提升编程技能,轻松拿下世界 IT 名企 Dream Offer。https://leetcode.cn/problems/min-cost-climbing-stairs/description/从左向右填dp表 class Solutio…...
MPU6050详细介绍
一、MPU6050介绍 MPU6050是由三个陀螺仪和三个加速度传感器组成的6轴运动处理组件 内部主要结构:陀螺仪、加速度计、数字运动处理器DMP(Digital Motion Processor) MPU6050有两个IIC接口,第一IIC接口可作为主接口给单片机传输数…...
【分享】Excel的3个隐藏功能
我们在制作Excel表格的时候,有时候会包含一些敏感信息,为了确保这些数据的安全性,Excel提供了隐藏功能来保护工作表,下面小编分享3个Excel常用的隐藏功能,一起来看看如何设置吧! 功能一:隐藏部分…...
Linux中的chown指令
chown(change owner)命令在 Linux 和其他类 Unix 系统中用于更改文件或目录的用户和/或组所有权。 基本用法 chown [选项] 用户名[:组名] 文件或目录 参数说明 用户名:指定新的文件或目录的所有者 组名:可选,指定新…...
UCOSIII内存管理机制详解
目录 前言 1. 内存管理概述 2. 内存区域(存储区)和内存块 3. 存储区控制块(OS_MEM) 4. 内存管理函数 5. 内存碎片问题 6. 注意事项 7.代码实现 7.1创建内存区域 7.2申请内存 7.3释放内存 前言 UCOSIII(即Mi…...
Android12 显示框架之Transaction----client端
目录:Android显示终极宝典 在前面的章节中,应用通过createSurface()在surfaceflinger中创建了一层layer,紧接着要做的事情就是对这个layer设置一些属性(或者叫状态),常设置的属性有位置、大小、z-order等等…...
在Windows上使用FRP搭建内网穿透:
FRP服务器端配置(公网服务器) 下载FRP: 访问FRP的GitHub发布页面:https://github.com/fatedier/frp/releases下载对应系统架构的frp_<version>_linux_amd64.tar.gz(如果你的服务器是Linux系统)或者f…...
TypeError: Cannot read properties of undefined (reading ‘scrollIntoView‘)(已解决)
问题复现:眨眼睛使用vitevue3实现跳转dom功能时使用了scrollIntoView方法,在打包上传以后使用该功能报错 小友可能会陷入误区,以为是函数方法有问题,毕竟在开发时是没有问题的, 而实际上呢问题出在获取节点失败了 在这…...
【解决】Unity Inspector 视窗脚本中文乱码问题
开发平台:Unity 2020 编程平台:Visual Studio 2022 问题描述 开发过程中,为便利化快速审阅代码内容,通过 Unity Inspector 确认代码内容与逻辑。但对于默认安装的 Visual Studio 编程平台,保存的 UTF- 8 脚本文件在…...
使用 C/C++访问 MySQL
目录 准备工作 尝试链接 MySQL Client MySQL 接口介绍 准备工作 保证 MySQL 服务有效。下载MySQL开发包(可以在MySQL官网下载安装也可以在软件源安装) MySQL 开发包通常会包含一些特定的头文件和库文件。您可以检查以下常见的路径: /us…...
Linux 网络套接字解析:实现网络通信
目录 一.网络基础1.协议2.OSI与TCP/IP模型3.网络通信流程4.IP与Mac地址 二.网络编程套接字1.端口号2.网络字节序3.tcp、udp协议4.socket编程5.sockaddr结构解析6.实现Udp_socket7.实现Windows与Linux通信8.Linux下远程执行指令9.实现tcp_socket10.守护进程 一.网络基础 1.协议…...
vue3 组合式API
<!-- 深度监听 deep 点击按钮控制台,才输出count变化了: 1, 老值: 0;否则控制台不输出 --> <script setup>import { ref,watch } from vueconst state ref({count:0})const setCount () > {state.count.value}watch(state, () > {console.log(…...
二、什么是Vue中的响应式?Vue的响应式原理
什么是Vue中的响应式 Vue中的响应式,简而言之就是当数据发生变化时,页面跟随变化。使用过Vue的v-model都有比较深刻的感受,我们在代码中修改双向绑定的数据后,页面上的数据也会自动更新,页面跟随变化 我们看个例子&am…...
快9月了才开始强化,跟张宇还是武忠祥?
快9月了才开始强化,跟张宇还是武忠祥! 说真的,我也替这位同学着急,但是考研数学越是进度慢,就越不能急!急着赶进度,容易出事!遇到这个问题的朋友肯定不止一位,那我就帮大…...
SSM好易学学习平台---附源码92142
摘 要 随着互联网趋势的到来,各行各业都在考虑利用互联网将自己推广出去,最好方式就是建立自己的互联网系统,并对其进行维护和管理。在现实运用中,应用软件的工作规则和开发步骤,采用Java技术建设好易学学习平台。本文…...
对于mp4 ios和mac safari不能播放问题处理
直接对原mp4文件进行重新转码就可以了 ffmpeg -i origin.mp4 -vcodec h264 -profile:v high -level 4.1 orgin_hl.mp4 原因源文件不符合苹果基本规则 苹果官网文档...
开发同城交友找搭子系统app前景分析
开发同城交友系统APP的背景 社交需求多样化: 随着城市化的加速和人们生活节奏的加快,现代人的社交圈子往往较为狭窄,难以结识新朋友。传统的线下交友方式受限于时间、地点等因素,难以满足现代人对于交友的多样化需求。互联网和智…...
faiss向量数据库测试《三体》全集,这家国产AI加速卡,把性能提了7倍!
在人工智能和机器学习技术的飞速发展中,向量数据库在处理高维数据方面扮演着日益重要的角色。近年来,随着大型模型的流行,向量数据库技术也得到了进一步的发展和完善。 向量数据库为大型模型提供了一个高效的数据管理和检索平台,…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
提升移动端网页调试效率:WebDebugX 与常见工具组合实践
在日常移动端开发中,网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时,开发者迫切需要一套高效、可靠且跨平台的调试方案。过去,我们或多或少使用过 Chrome DevTools、Remote Debug…...
