当前位置: 首页 > news >正文

机器学习第十二章-计算学习理论

目录

12.1基础知识

12.2 PAC学习

12.3有限假设空间

12.3.1可分情形

12.3.2不可分情形

12.4VC维

12.5 Rademacher复杂度


12.1基础知识

        计算学习理论研究的是关于通过"计算"来进行"学习"的理论,即关于机器学习的理论基础,其目的是分析学习任务的困难本质,为学习算法提供理论保证,并根据分析结果指导算法设计。

        给定样例集 = {(X1  , Y2) , (X2,Y2 ),..., (Xm , Ym)} ,x_{i}\epsilon X
        令h为X到Y 的一个映射,其泛化误差为:
                                E(h ; \mathcal{D})=P_{\boldsymbol{x} \sim \mathcal{D}}(h(\boldsymbol{x}) \neq y)
        h在D上的经验误差为:
                                  E(h ; \mathcal{D})=P_{\boldsymbol{x} \sim \mathcal{D}}(h(\boldsymbol{x}) \neq y)\widehat{E}(h ; D)=\frac{1}{m} \sum_{i=1}^{m} \mathbb{I}\left(h\left(\boldsymbol{x}_{i}\right) \neq y_{i}\right)
        后面部分将研究经验误差与泛化误差之间的逼近程度会用到几个常用不等式:
        1.Jensen 不等式:对任意凸函数 f(x) ,有:
                                                f(\mathbb{E}(x)) \leqslant \mathbb{E}(f(x))
        2.HoefIding 不等式 : 若 x_{1},x_{2}....x_{m}为m个独立随机变量,且满足 0<x_{i}<1 ,则对任意 \varepsilon >0 ,有:
\begin{array}{l} P\left(\frac{1}{m} \sum_{i=1}^{m} x_{i}-\frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left(x_{i}\right) \geqslant \epsilon\right) \leqslant \exp \left(-2 m \epsilon^{2}\right) \\ P\left(\left|\frac{1}{m} \sum_{i=1}^{m} x_{i}-\frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left(x_{i}\right)\right| \geqslant \epsilon\right) \leqslant 2 \exp \left(-2 m \epsilon^{2}\right) \end{array}
3.McDiarmid 不等式 : 若 x_{1},x_{2}...x_{m}为m个独立随机变量,且对任意1<i<m,函数f 满足:
\begin{array}{l} P\left(f\left(x_{1}, \ldots, x_{m}\right)-\mathbb{E}\left(f\left(x_{1}, \ldots, x_{m}\right)\right) \geqslant \epsilon\right) \leqslant \exp \left(\frac{-2 \epsilon^{2}}{\sum_{i} c_{i}^{2}}\right) \\ P\left(\left|f\left(x_{1}, \ldots, x_{m}\right)-\mathbb{E}\left(f\left(x_{1}, \ldots, x_{m}\right)\right)\right| \geqslant \epsilon\right) \leqslant 2 \exp \left(\frac{-2 \epsilon^{2}}{\sum_{i} c_{i}^{2}}\right) \end{array}

12.2 PAC学习

        计算学习理论中最基本的是概率近似正确 ( 简称 PAC) 学习理论 。
PAC 辨识 :对 0<\varepsilon ,\delta <1,所有 c\varepsilon C  和分布D,若存在学习算法\Im,其输出假设 h\epsilon \mathbb{R}  满足:
                                                P(E(h) \leqslant \epsilon) \geqslant 1-\delta
则称学习算法 \Im 能从假设空间中 PAC 辨识概念类 C. 
PAC 可学习 : 令m表示从分布D中独立同分布采样得到的样例数目,0<\varepsilon ,\delta <1,对所有分布D, 若存在学习算法£和多项式函数poly,使得对任何m>poly.
PAC 学习算法: 若学习算法\Im使概念类 C为PAC 可学习的,且 \Im的运行时间也多项式函数 poly ,则称概念类 C 是高效 PAC 可学习  的,称\Im为概念类C的 PAC 学习算法.
样本复杂度 : 满足 PAC 学习算法\Im所需的 m> poly 中最小的m,称为学习算法 \Im的样本复杂度.

12.3有限假设空间

12.3.1可分情形

        可分情形意味着目标概念c属于假设空间H,即 c\epsilon H。对 PAC 学习来说,只要训练集D 的规模能使学习算法\Im以概率1-\delta 找到目标假设的\varepsilon近似即可.

        我们先估计泛化误差大于 \varepsilon但在训练集上仍表现完美的假设出现的概率. 假定 h的泛化误差大于 \varepsilon,对分布 D上随机来样而得的任何样例 (x y)有:

                        P(E(h) \leqslant \epsilon) \geqslant 1-\delta\begin{aligned} P(h(\boldsymbol{x})=y) & =1-P(h(\boldsymbol{x}) \neq y) \\ & =1-E(h) \\ & <1-\epsilon \end{aligned}

        由于D包含 m个从 D 独立同分布采样而得的样例,因此,h与D  表现一 致的概率为:
                \begin{aligned} P\left(\left(h\left(\boldsymbol{x}_{1}\right)=y_{1}\right) \wedge \ldots \wedge\left(h\left(\boldsymbol{x}_{m}\right)=y_{m}\right)\right) & =(1-P(h(\boldsymbol{x}) \neq y))^{m} \\ & <(1-\epsilon)^{m} \end{aligned}

12.3.2不可分情形

        引理若训练集D包含m个从分布D上独立同分布采样而得的样例,0<\varepsilon <1,则对任意 h\epsilon H,有:\begin{array}{l} P(\widehat{E}(h)-E(h) \geqslant \epsilon) \leqslant \exp \left(-2 m \epsilon^{2}\right) \\ P(E(h)-\widehat{E}(h) \geqslant \epsilon) \leqslant \exp \left(-2 m \epsilon^{2}\right) \\ P(|E(h)-\widehat{E}(h)| \geqslant \epsilon) \leqslant 2 \exp \left(-2 m \epsilon^{2}\right) \end{array}

        推论 :若训练集D 包含 m个从分布 D上独立同分布来样而得的样例, 0<\varepsilon <1 ,则对任意 h\epsilon H以至少 1-\delta 的概率成立:

                        \widehat{E}(h)-\sqrt{\frac{\ln (2 / \delta)}{2 m}} \leqslant E(h) \leqslant \widehat{E}(h)+\sqrt{\frac{\ln (2 / \delta)}{2 m}}

        定理 :若H为有限假设空间,0<\varepsilon <1 ,则对任意 h\epsilon H,有:

                        P\left(|E(h)-\widehat{E}(h)| \leqslant \sqrt{\frac{\ln |\mathcal{H}|+\ln (2 / \delta)}{2 m}}\right) \geqslant 1-\delta

12.4VC维

        现实学习任务所面临的通常是无限假设空间,欲对此种情形的可学习性进行研究,需度量假设空间的复杂度.最常见的办法是考虑假设空间的 "VC维"。
1. 增长函数
        增长函数,也称为VC维增长函数,描述了在给定假设空间下,能够被假设空间所“分割”或“覆盖”的训练样本的最大数量。具体来说,它衡量的是假设空间中能够对样本集进行不同标签分配的能力。增长函数的定义如下:对于一个假设空间  H )和一个样本集  S (大小为 m ),增长函数 (M_{H}(m) ) 表示假设空间 H 能够对样本集 S 进行的不同标签分配的最大数量。

2. 打分
        打分是一个与增长函数紧密相关的概念。它描述了一个假设空间能否对某个样本集进行所有可能的标签分配。具体来说:一个假设空间 (H )能打分一个样本集 S (大小为  m,如果 H  中的假设可以对 S 中的每一种可能的标签分配进行匹配。

 

3. 打散
        打散(或称为分裂)是一个与打分相关的概念,描述了假设空间能否在所有可能的标签分配下对样本集进行准确的分类。具体来说:假设空间  H 能打散一个样本集S (大小为 m )如果H能对 S 中的每一种标签分配进行正确的分类。换句话说,如果假设空间 H 能生成所有可能的标签分配。

 

4. VC维
        VC维是衡量一个假设空间复杂度的指标,它反映了假设空间能够打散的最大样本集的大小。具体来说:VC维是一个假设空间  H 可以打散的最大样本集的大小。即,如果假设空间  H 能打散大小为 d 的样本集,但不能打散大小为 d+1 的样本集,那么 H 的VC维就是 d。

增长函数 衡量假设空间对样本集进行的标签分配的能力。
打分 描述假设空间是否能够覆盖所有可能的标签分配。
打散 具体指假设空间对样本集进行所有可能标签分配的能力。
VC维 是衡量假设空间复杂度的关键指标,反映了最大打散能力。

12.5 Rademacher复杂度

        Rademacher 复杂度 是另一种刻画假设空间复 杂度的途径,与 vc 维不同的是,它在一定程度上考虑了数据分布.

给定训练集 ={(X1 , Y2), (X2,Y2),..., (Xm , Ym)} 假设h 的经验误差为:

                                                        \begin{aligned} \widehat{E}(h) & =\frac{1}{m} \sum_{i=1}^{m} \mathbb{I}\left(h\left(\boldsymbol{x}_{i}\right) \neq y_{i}\right) \\ & =\frac{1}{m} \sum_{i=1}^{m} \frac{1-y_{i} h\left(\boldsymbol{x}_{i}\right)}{2} \\ & =\frac{1}{2}-\frac{1}{2 m} \sum_{i=1}^{m} y_{i} h\left(\boldsymbol{x}_{i}\right) \end{aligned}

经验误差最小的假设是:
                                        \underset{h \in \mathcal{H}}{\arg \max } \frac{1}{m} \sum_{i=1}^{m} y_{i} h\left(\boldsymbol{x}_{i}\right)
\sigma _{i}是Rademacher 随机变量.
函数空间 F 关于 Z 的经验 Rademacher 复杂度:
                                        \widehat{R}_{Z}(\mathcal{F})=\mathbb{E}_{\boldsymbol{\sigma}}\left[\sup _{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} f\left(\boldsymbol{z}_{i}\right)\right]
函数空间 F 关于Z  上分布D的  Rademacher 复杂度:
                                        R_{m}(\mathcal{F})=\mathbb{E}_{Z \subseteq \mathcal{Z}:|Z|=m}\left[\widehat{R}_{Z}(\mathcal{F})\right]

        

        
     
      

相关文章:

机器学习第十二章-计算学习理论

目录 12.1基础知识 12.2 PAC学习 12.3有限假设空间 12.3.1可分情形 12.3.2不可分情形 12.4VC维 12.5 Rademacher复杂度 12.1基础知识 计算学习理论研究的是关于通过"计算"来进行"学习"的理论&#xff0c;即关于机器学习的理论基础&#xff0c;其目的…...

Java-自定义注解操作日志记录处理(@Pointcut注解不是必须的)

在Java中,使用自定义注解结合Spring AOP来实现操作日志记录是一种常见的做法。这种方式可 以帮助你轻松地在不修改业务代码的情况下增加日志记录的功能。 下面我将详细介绍如何定义一个自定义注解,并结合Spring AOP来实现操作日志记录的功能。 1. 定义自定义注解 首先,我…...

【c++】深入理解别名机制--引用

&#x1f31f;&#x1f31f;作者主页&#xff1a;ephemerals__ &#x1f31f;&#x1f31f;所属专栏&#xff1a;C 目录 前言 一、引用的概念和定义 二、引用的特性 三、引用的实用性 1.引用传参 2.引用做返回值 2.1 引用做返回值的作用 2.2 引用坍缩问题、悬挂引用问…...

简便的qemu img扩容方法

虚拟机用着用着磁盘空间就不够了&#xff0c;那就要想办法增加磁盘空间大小 了。在虚拟机本身磁盘的基础上直接增加空间大小最简便&#xff0c;于是记录一下方法。 首先&#xff0c;在虚拟机关机状态下&#xff0c;使用qemu-img命令给虚拟机的磁盘镜像增加虚拟空间5GB&#xff…...

EPERM: operation not permitted,

这个错误提示 EPERM: operation not permitted, mkdir C:\Program Files\nodejs\node_global\node_modules\pnpm_tmp 通常是因为权限不足导致的。在 Windows 系统中&#xff0c;C:\Program Files\ 目录通常需要管理员权限才能写入。 要解决这个问题&#xff0c;你可以尝试以下…...

将Centos 8 Linux内核版本升级或降级到指定版本

本文以centos 8.0为例&#xff0c;内核版本为4.18.0-80.el8.x86_64&#xff0c;升级到内核版本为4.18.0-80.4.2.el8_0.x86_64。 1.查看当前系统版本信息 [rootcentos80-1905 ~]# uname -sr Linux 4.18.0-80.el8.x86_642.在网站&#xff1a;https://vault.centos.org/里面下载…...

小程序商城被盗刷,使用SCDN安全加速有用吗?

在电子商务蓬勃发展的今天&#xff0c;小程序商城因其便捷性和灵活性成为商家和消费者的新宠。然而&#xff0c;随着其普及&#xff0c;小程序商城的安全问题也日益凸显&#xff0c;尤其是盗刷现象频发&#xff0c;给商家和用户带来了巨大损失。面对这一挑战&#xff0c;是否可…...

nginx的基本使用与其日志

文章目录 1.nginx编译安装脚本2.nginx平滑升级&#xff0c;以及其步骤3.nginx核心配置&#xff0c;及实现nginx多虚拟主机4.nginx日志格式定制5.nginx反向代理及https安全加密6.基于LNMP和Redis的phpmyadmin的会话保持&#xff0c;以及其完整步骤 1.nginx编译安装脚本 #编译安…...

linux | 苹果OpenCL(提高应用软件如游戏、娱乐以及科研和医疗软件的运行速度和响应)

点击上方"蓝字"关注我们 01、引言 >>> OpenCL 1.0 于 2008 年 11 月发布。 OpenCL 是为个人电脑、服务器、移动设备以及嵌入式设备的多核系统提供并行编程开发的底层 API。OpenCL 的编程语言类似于 C 语言。其可以用于包含 CPU、GPU 以及来自主流制造商如 …...

算法-UKF中Sigma点生成

void UKF::MakeSigmaPoints() {Eigen::VectorXd x_aug_ Eigen::VectorXd(n_x_);x_aug_.head(n_x_) x_;Eigen::MatrixXd P_aug Eigen::MatrixXd::Zero(n_x_, n_x_);// 转成正定矩阵P_aug pdefinite_svd(P_);// LLT分解Eigen::MatrixXd L P_aug.llt().matrixL();sigma_point…...

精选五款热门骨传导耳机分享,让你避免踩坑的陷阱

因为骨传导耳机独特的佩戴方式和声音的传播方式&#xff0c;受到了小耳、油耳以及运动爱好者的的喜爱&#xff0c;但也由于市面上的骨传导耳机品牌越来越多&#xff0c;很多朋友不知道该怎么选择&#xff0c;今天我挑选出市面上体验感较好&#xff0c;各方面比较出色的骨传导给…...

「字符串」前缀函数|KMP匹配:规范化next数组 / LeetCode 28(C++)

概述 为什么大家总觉得KMP难&#xff1f;难的根本就不是这个算法本身。 在互联网上你可以见到八十种KMP算法的next数组定义和模式串回滚策略&#xff0c;把一切都懂得特别混乱。很多时候初学者的难点根本不在于这个算法本身&#xff0c;而是它令人痛苦的百花齐放的定义。 有…...

python人工智能002:jupyter基本使用

小知识&#xff1a;将jupyter修改为中文&#xff0c;修改用户变量&#xff0c; 注意是用户变量&#xff0c;不是系统变量 新增用户变量 变量名&#xff1a;LANG 变量值&#xff1a;zh_CN.UTF8 然后重启jupyter 上一章的软件安装完成之后&#xff0c;就可以创建文件夹来学习写…...

Linux使用 firewalld管理防火墙命令

Linux 发行版中使用的动态防火墙管理工具。使用 firewalld&#xff0c;你可以查看防火墙状态、当前配置的规则以及开放的端口。以下是一些常用的 firewalld 命令来管理和查看防火墙状态及端口配置。 1. 查看防火墙状态 检查 firewalld 是否正在运行 sudo systemctl status f…...

二叉树(三)

一、二叉树的遍历 二叉树遍历是按照某种特定的规则&#xff0c;依次对二叉树中的结点进行相应的操作&#xff0c;并且每个结点只操作一次。 1.前序遍历&#xff08;先根遍历&#xff09; 前序遍历&#xff08;Preorder Traversal也叫先序遍历&#xff09;——根、左子树、右…...

05--kubernetes组件与安装

前言&#xff1a;终于写到kubernetes&#xff08;k8s&#xff09;&#xff0c;容器编排工具不止k8s一个&#xff0c;它的优势在于搭建集群&#xff0c;也是传统运维和云计算运维的第一道门槛&#xff0c;这里会列出两种安装方式&#xff0c;详细步骤会在下文列出&#xff0c;文…...

EmguCV学习笔记 VB.Net和C# 下的OpenCv开发 C# 目录

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 EmguCV是一个基于OpenCV的开源免费的跨平台计算机视觉库,它向C#和VB.NET开发者提供了OpenCV库的大部分功能。 教程VB.net版本请访问…...

探索TensorFlow:深度学习的未来

标题&#xff1a;探索TensorFlow&#xff1a;深度学习的未来 在当今快速发展的人工智能领域&#xff0c;TensorFlow无疑是最耀眼的明珠之一。TensorFlow是由Google Brain团队开发的一个开源机器学习框架&#xff0c;它以其强大的灵活性、易用性和高效的性能&#xff0c;迅速成…...

探索地理空间分析的新世界:Geopandas的魔力

文章目录 探索地理空间分析的新世界&#xff1a;Geopandas的魔力背景&#xff1a;为何选择Geopandas&#xff1f;这个库是什么&#xff1f;如何安装这个库&#xff1f;五个简单的库函数使用方法场景应用&#xff1a;Geopandas在实际工作中的应用常见bug及解决方案总结 探索地理…...

如何为网站申请免费SSL证书?

一、准备阶段 确定证书类型&#xff1a; 对于大多数个人博客和小型企业网站&#xff0c;DV&#xff08;域名验证&#xff09;SSL证书已足够使用&#xff0c;因为它仅验证域名所有权&#xff0c;成本较低且验证快速。准备域名&#xff1a; 确保你拥有一个有效的域名&#xff0c…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中&#xff0c;新增了一个本地验证码接口 /code&#xff0c;使用函数式路由&#xff08;RouterFunction&#xff09;和 Hutool 的 Circle…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...