当前位置: 首页 > news >正文

算法-UKF中Sigma点生成

void UKF::MakeSigmaPoints() {Eigen::VectorXd x_aug_ = Eigen::VectorXd(n_x_);x_aug_.head(n_x_) = x_;Eigen::MatrixXd P_aug = Eigen::MatrixXd::Zero(n_x_, n_x_);// 转成正定矩阵P_aug = pdefinite_svd(P_);// LLT分解Eigen::MatrixXd L = P_aug.llt().matrixL();sigma_points = Eigen::MatrixXd(n_x_, 2 * n_x_ + 1);sigma_points.col(0) = x_aug_;const double c = std::sqrt(lamda_ + n_x_);for (int i = 0; i < n_x_; ++i) {sigma_points.col(i + 1) = x_aug_ + c * L.col(i);sigma_points.col(i + n_x_ + 1) = x_aug_ - c * L.col(i);}
}

代码中Sigma点生成解释如下:
在UKF(Unscented Kalman Filter,无迹卡尔曼滤波)中,sigma点是一组精心选择的采样点,用于近似非线性函数的传播和观测模型。这些sigma点基于系统的状态向量均值和协方差矩阵生成,旨在捕捉状态向量的分布特性。以下是关于UKF中sigma点的详细解释:
一、sigma点的生成

确定状态向量和协方差矩阵:状态向量通常包含系统的状态变量。协方差矩阵描述了状态变量之间的关系,即各状态变量之间的协方差。
选择sigma点的数量:通常,sigma点的数量是状态向量维度的两倍加一,即如果状态向量的维度为n,则sigma点的数量为2n+1。
生成sigma点:根据状态向量的均值和协方差矩阵,通过特定的算法(如Julier-UT权重或Merwe-UT权重)生成sigma点。这些sigma点围绕状态向量的均值分布,能够较好地反映状态向量的概率分布特性。

二、sigma点的作用

近似非线性函数的传播:在UKF的预测步骤中,将生成的sigma点通过系统的非线性状态方程传播到下一个时刻,得到预测的sigma点。这一步骤用于近似非线性函数在状态空间中的传播。
计算预测状态向量和协方差矩阵:通过对传播后的sigma点进行加权平均,计算预测状态向量和预测协方差矩阵。这些预测值反映了系统状态在下一时刻的估计值及其不确定性。
近似非线性观测模型:在UKF的更新步骤中,将预测的sigma点通过系统的非线性观测方程映射到观测空间,得到预测的观测值sigma点。这一步骤用于近似非线性观测模型在观测空间中的表现。
计算卡尔曼增益和更新状态向量:通过预测的观测值sigma点计算预测的观测向量和协方差矩阵,进而计算卡尔曼增益。最后,利用卡尔曼增益和实际的观测值对预测的状态向量进行修正,得到更新后的状态向量和协方差矩阵。

三、sigma点的优势

处理非线性系统:UKF通过sigma点近似非线性函数的传播和观测模型,能够有效处理非线性系统。
提高估计精度:相比于EKF(Extended Kalman Filter,扩展卡尔曼滤波)通过泰勒展开将非线性系统线性化,UKF不需要忽略高阶项,因此通常能够获得更高的估计精度。
实现简单:UKF在实现上比EKF更为简单,因为它不需要计算复杂的雅可比矩阵。

综上所述,sigma点在UKF中扮演着至关重要的角色,它们通过近似非线性函数的传播和观测模型,实现了对非线性系统的有效滤波和状态估计。

相关文章:

算法-UKF中Sigma点生成

void UKF::MakeSigmaPoints() {Eigen::VectorXd x_aug_ Eigen::VectorXd(n_x_);x_aug_.head(n_x_) x_;Eigen::MatrixXd P_aug Eigen::MatrixXd::Zero(n_x_, n_x_);// 转成正定矩阵P_aug pdefinite_svd(P_);// LLT分解Eigen::MatrixXd L P_aug.llt().matrixL();sigma_point…...

精选五款热门骨传导耳机分享,让你避免踩坑的陷阱

因为骨传导耳机独特的佩戴方式和声音的传播方式&#xff0c;受到了小耳、油耳以及运动爱好者的的喜爱&#xff0c;但也由于市面上的骨传导耳机品牌越来越多&#xff0c;很多朋友不知道该怎么选择&#xff0c;今天我挑选出市面上体验感较好&#xff0c;各方面比较出色的骨传导给…...

「字符串」前缀函数|KMP匹配:规范化next数组 / LeetCode 28(C++)

概述 为什么大家总觉得KMP难&#xff1f;难的根本就不是这个算法本身。 在互联网上你可以见到八十种KMP算法的next数组定义和模式串回滚策略&#xff0c;把一切都懂得特别混乱。很多时候初学者的难点根本不在于这个算法本身&#xff0c;而是它令人痛苦的百花齐放的定义。 有…...

python人工智能002:jupyter基本使用

小知识&#xff1a;将jupyter修改为中文&#xff0c;修改用户变量&#xff0c; 注意是用户变量&#xff0c;不是系统变量 新增用户变量 变量名&#xff1a;LANG 变量值&#xff1a;zh_CN.UTF8 然后重启jupyter 上一章的软件安装完成之后&#xff0c;就可以创建文件夹来学习写…...

Linux使用 firewalld管理防火墙命令

Linux 发行版中使用的动态防火墙管理工具。使用 firewalld&#xff0c;你可以查看防火墙状态、当前配置的规则以及开放的端口。以下是一些常用的 firewalld 命令来管理和查看防火墙状态及端口配置。 1. 查看防火墙状态 检查 firewalld 是否正在运行 sudo systemctl status f…...

二叉树(三)

一、二叉树的遍历 二叉树遍历是按照某种特定的规则&#xff0c;依次对二叉树中的结点进行相应的操作&#xff0c;并且每个结点只操作一次。 1.前序遍历&#xff08;先根遍历&#xff09; 前序遍历&#xff08;Preorder Traversal也叫先序遍历&#xff09;——根、左子树、右…...

05--kubernetes组件与安装

前言&#xff1a;终于写到kubernetes&#xff08;k8s&#xff09;&#xff0c;容器编排工具不止k8s一个&#xff0c;它的优势在于搭建集群&#xff0c;也是传统运维和云计算运维的第一道门槛&#xff0c;这里会列出两种安装方式&#xff0c;详细步骤会在下文列出&#xff0c;文…...

EmguCV学习笔记 VB.Net和C# 下的OpenCv开发 C# 目录

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 EmguCV是一个基于OpenCV的开源免费的跨平台计算机视觉库,它向C#和VB.NET开发者提供了OpenCV库的大部分功能。 教程VB.net版本请访问…...

探索TensorFlow:深度学习的未来

标题&#xff1a;探索TensorFlow&#xff1a;深度学习的未来 在当今快速发展的人工智能领域&#xff0c;TensorFlow无疑是最耀眼的明珠之一。TensorFlow是由Google Brain团队开发的一个开源机器学习框架&#xff0c;它以其强大的灵活性、易用性和高效的性能&#xff0c;迅速成…...

探索地理空间分析的新世界:Geopandas的魔力

文章目录 探索地理空间分析的新世界&#xff1a;Geopandas的魔力背景&#xff1a;为何选择Geopandas&#xff1f;这个库是什么&#xff1f;如何安装这个库&#xff1f;五个简单的库函数使用方法场景应用&#xff1a;Geopandas在实际工作中的应用常见bug及解决方案总结 探索地理…...

如何为网站申请免费SSL证书?

一、准备阶段 确定证书类型&#xff1a; 对于大多数个人博客和小型企业网站&#xff0c;DV&#xff08;域名验证&#xff09;SSL证书已足够使用&#xff0c;因为它仅验证域名所有权&#xff0c;成本较低且验证快速。准备域名&#xff1a; 确保你拥有一个有效的域名&#xff0c…...

Java项目集成RocketMQ

文章目录 1.调整MQ的配置1.进入bin目录2.关闭broker和namesrv3.查看进程确认关闭4.编辑配置文件broker.conf&#xff0c;配置brokerIP15.开放端口109116.重新启动1.进入bin目录2.启动mqnamesrv和mqbroker1.启动 NameServer 并将输出重定向到 mqnamesrv.log2.**启动 Broker 并将…...

如何将 Bamboo agent 能力迁移到极狐GitLab tag 上?

极狐GitLab 是 GitLab 在中国的发行版&#xff0c;专门面向中国程序员和企业提供企业级一体化 DevOps 平台&#xff0c;用来帮助用户实现需求管理、源代码托管、CI/CD、安全合规&#xff0c;而且所有的操作都是在一个平台上进行&#xff0c;省事省心省钱。可以一键安装极狐GitL…...

正则表达式入门:Python ‘ re ‘ 模块详解

正则表达式&#xff08;Regular Expression&#xff0c;简称 re&#xff09;是一种强大而灵活的工具&#xff0c;广泛用于字符串匹配、替换和分割等操作&#xff0c;尤其在处理网页爬虫数据时非常有用。Python 提供了 " re " 模块来支持正则表达式的使用&#xff0c;…...

thinkphp8.0+aliapy(支付宝)pc网站支付

环境&#xff1a;宝塔-centOS8.5,php8.3 第一步&#xff1a;安装alipay v3版本的安装依赖包&#xff1b; composer require alipaysdk/openapi:dev第二步&#xff1a;根据官方文档,把支付相关的类引用进来&#xff1b; <?php declare (strict_types 1);namespace app\p…...

高速信号的眼图、加重、均衡

目录 高速信号的眼图、加重、均衡眼图加重均衡线性均衡器CTLE判决反馈均衡器DFE 高速信号的眼图、加重、均衡 眼图 通常用示波器观察接收信号波形的眼图来分析码间串扰和噪声对系统性能的影响&#xff0c;从而估计系统优劣程度&#xff0c;因而眼图分析是高速互连系统信号完整…...

2024年PMP考前冲刺必背的学习笔记,整理好给你!

项目的四大特点:临时性、独特性、变革驱动性和创造商业价值。 项目管理&#xff1a;将知识、技能、工具与技术应用于项目活动&#xff0c;以满足项目的要求 Pestle&#xff1a;P政治&#xff0c;E经济&#xff0c;S社会&#xff0c;T技术&#xff0c;L法律&#xff0c;E环境 …...

增加服务器带宽可以提高资源加载速度吗?

答案是可以的 &#xff0c;增加服务器带宽通常能够提高资源加速速度。带宽是服务器与互联网之间传输数据的速率&#xff0c;它决定了在单位时间内可以传输的数据量。以下是增加带宽如何提高资源加速速度的几个方面&#xff1a; 1.更快的数据传输&#xff1a;带宽增加后&#xf…...

汽车EDI: NAVISTAR EDI对接

Navistar International Corporation 是一家美国商用车辆制造公司&#xff0c;总部位于伊利诺伊州的Lisle。公司以生产中型和重型卡车、公共汽车、柴油发动机和底盘闻名&#xff0c;其产品广泛应用于运输、建筑、和农业等行业。Navistar 的历史可以追溯到1831年&#xff0c;由国…...

【Word多级标题完整设置】设置各级标题样式将多级列表链接到各级标题样式中

Word多级标题完整设置 一、设置各级标题样式主标题样式设置中英文字体、字形以及字号设置段落设置&#xff08;缩进、间距和行距&#xff09; 一级标题样式设置中英文字体、字形以及字号设置段落设置&#xff08;缩进、间距和行距&#xff09; 二级标题样式设置中英文字体、字形…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用

在工业制造领域&#xff0c;无损检测&#xff08;NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统&#xff0c;以非接触式光学麦克风技术为核心&#xff0c;打破传统检测瓶颈&#xff0c;为半导体、航空航天、汽车制造等行业提供了高灵敏…...

规则与人性的天平——由高考迟到事件引发的思考

当那位身着校服的考生在考场关闭1分钟后狂奔而至&#xff0c;他涨红的脸上写满绝望。铁门内秒针划过的弧度&#xff0c;成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定"&#xff0c;构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...

flow_controllers

关键点&#xff1a; 流控制器类型&#xff1a; 同步&#xff08;Sync&#xff09;&#xff1a;发布操作会阻塞&#xff0c;直到数据被确认发送。异步&#xff08;Async&#xff09;&#xff1a;发布操作非阻塞&#xff0c;数据发送由后台线程处理。纯同步&#xff08;PureSync…...

2025年- H71-Lc179--39.组合总和(回溯,组合)--Java版

1.题目描述 2.思路 当前的元素可以重复使用。 &#xff08;1&#xff09;确定回溯算法函数的参数和返回值&#xff08;一般是void类型&#xff09; &#xff08;2&#xff09;因为是用递归实现的&#xff0c;所以我们要确定终止条件 &#xff08;3&#xff09;单层搜索逻辑 二…...