linux | 苹果OpenCL(提高应用软件如游戏、娱乐以及科研和医疗软件的运行速度和响应)
点击上方"蓝字"关注我们
01、引言
>>>OpenCL 1.0 于 2008 年 11 月发布。
OpenCL 是为个人电脑、服务器、移动设备以及嵌入式设备的多核系统提供并行编程开发的底层 API。OpenCL 的编程语言类似于 C 语言。其可以用于包含 CPU、GPU 以及来自主流制造商如 NXP®、NVIDIA®、Intel®、AMD、IBM 等的处理器的异构平台。OpenCL 旨在提高应用软件如游戏、娱乐以及科研和医疗软件的运行速度和响应。
我们使用 Apalis iMX6Q 系统模块测试 OpenCL,对比两个应用 - 一个运行在 GPU 上,另一个则在 CPU。最后我们将分享本次测试的结果。
02、Toradex Embedded Linux 镜像中添加 OpenCL
>>>假设你已经具有能够编译 Apalis iMX6 镜像的 OpenEmbedded 编译环境。你可以参考我们 OpenEmbedded (core) 【http://developer.toradex.com/knowledge-base/board-support-package/openembedded-(core)】文章。
为编译支持 OpenCL 以及相关库文件的嵌入式 Linux 镜像,需要采取以下步骤:
首先,修改下面目录中的文件。
/meta-toradex/recipes-fsl/packagegroups/packagegroup-fsl-tools-gpu.bbappend
添加如下内容:SOC_TOOLS_GPU_append_mx6 = " \libopencl-mx6 \libgles-mx6 \ "并在 local.conf 文件中添加 imx-gpu-viv
IMAGE_INSTALL_append = "imx-gpu-viv"
现在就可以编译镜像:bitbake angstrom-lxde-image
03、GPU 和 CPU 代码
>>>所有的代码可以从 GitHub【https://github.com/giobauermeister/OpenCL-test-apps】上下载。
我们使用数列求和应用作为基本的演示例程。第一部分代码运行在 GPU 上,第二部分则在 CPU 上。应用执行完毕后打印其所消耗的时间。使用 OpenCL 所需的头文件是 cl.h,位于文件系统的 /usr/include/CL 目录。链接程序所需的库文件是 libGAL.so 和 libOpenCL.so,位于 /usr/lib 目录。
为了计算消耗的时间,我们创建带分析功能的队列,在结束的时候获取分析的结果。
下面是 OpenCL 代码:
//************************************************************ // Demo OpenCL application to compute a simple vector addition // computation between 2 arrays on the GPU // ************************************************************ #include #include #include #include <CL/cl.h> // // OpenCL source code const char* OpenCLSource[] = { "__kernel void VectorAdd(__global int* c, __global int* a,__global int* b)", "{", " // Index of the elements to add \n", " unsigned int n = get_global_id(0);", " // Sum the nth element of vectors a and b and store in c \n", " c[n] = a[n] + b[n];", "}" }; // Some interesting data for the vectors Int InitialData1[80] = {37,50,54,50,56,0,43,43,74,71,32,36,16,43,56,100,50,25,15,17,37,50,54,50,56,0,43,43,74,71,32,36,16,43,56,100,50,25,15,17,37,50,54,50,56,0,43,43,74,71,32,36,16,43,56,100,50,25,15,17,37,50,54,50,56,0,43,43,74,71,32,36,16,43,56,100,50,25,15,17}; int InitialData2[80] = {35,51,54,58,55,32,36,69,27,39,35,40,16,44,55,14,58,75,18,15,35,51,54,58,55,32,36,69,27,39,35,40,16,44,55,14,58,75,18,15,35,51,54,58,55,32,36,69,27,39,35,40,16,44,55,14,58,75,18,15,35,51,54,58,55,32,36,69,27,39,35,40,16,44,55,14,58,75,18,15}; // Number of elements in the vectors to be added #define SIZE 600000 // Main function // ************************************************************ int main(int argc, char **argv) { // Two integer source vectors in Host memoryint HostVector1[SIZE], HostVector2[SIZE];//Output Vectorint HostOutputVector[SIZE];// Initialize with some interesting repeating datafor(int c = 0; c < SIZE; c++){HostVector1[c] = InitialData1[c%20];HostVector2[c] = InitialData2[c%20];HostOutputVector[c] = 0;}//Get an OpenCL platformcl_platform_id cpPlatform;clGetPlatformIDs(1, &cpPlatform, NULL);// Get a GPU devicecl_device_id cdDevice;clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 1, &cdDevice, NULL);char cBuffer[1024];clGetDeviceInfo(cdDevice, CL_DEVICE_NAME, sizeof(cBuffer), &cBuffer, NULL);printf("CL_DEVICE_NAME: %s\n", cBuffer);clGetDeviceInfo(cdDevice, CL_DRIVER_VERSION, sizeof(cBuffer), &cBuffer, NULL);printf("CL_DRIVER_VERSION: %s\n\n", cBuffer);// Create a context to run OpenCL enabled GPUcl_context GPUContext = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL); // Create a command-queue on the GPU devicecl_command_queue cqCommandQueue = clCreateCommandQueue(GPUContext, cdDevice, CL_QUEUE_PROFILING_ENABLE, NULL);// Allocate GPU memory for source vectors AND initialize from CPU memorycl_mem GPUVector1 = clCreateBuffer(GPUContext, CL_MEM_READ_ONLY |CL_MEM_COPY_HOST_PTR, sizeof(int) * SIZE, HostVector1, NULL);cl_mem GPUVector2 = clCreateBuffer(GPUContext, CL_MEM_READ_ONLY |CL_MEM_COPY_HOST_PTR, sizeof(int) * SIZE, HostVector2, NULL);// Allocate output memory on GPUcl_mem GPUOutputVector = clCreateBuffer(GPUContext, CL_MEM_WRITE_ONLY,sizeof(int) * SIZE, NULL, NULL);// Create OpenCL program with source codecl_program OpenCLProgram = clCreateProgramWithSource(GPUContext, 7, OpenCLSource, NULL, NULL);// Build the program (OpenCL JIT compilation)clBuildProgram(OpenCLProgram, 0, NULL, NULL, NULL, NULL);// Create a handle to the compiled OpenCL function (Kernel)cl_kernel OpenCLVectorAdd = clCreateKernel(OpenCLProgram, "VectorAdd", NULL);// In the next step we associate the GPU memory with the Kernel argumentsclSetKernelArg(OpenCLVectorAdd, 0, sizeof(cl_mem), (void*)&GPUOutputVector);clSetKernelArg(OpenCLVectorAdd, 1, sizeof(cl_mem), (void*)&GPUVector1);clSetKernelArg(OpenCLVectorAdd, 2, sizeof(cl_mem), (void*)&GPUVector2);//create eventcl_event event = clCreateUserEvent(GPUContext, NULL);// Launch the Kernel on the GPU// This kernel only uses global datasize_t WorkSize[1] = {SIZE}; // one dimensional RangeclEnqueueNDRangeKernel(cqCommandQueue, OpenCLVectorAdd, 1, NULL, WorkSize, NULL, 0, NULL, &event);// Copy the output in GPU memory back to CPU memoryclEnqueueReadBuffer(cqCommandQueue, GPUOutputVector, CL_TRUE, 0,SIZE * sizeof(int), HostOutputVector, 0, NULL, NULL);// CleanupclReleaseKernel(OpenCLVectorAdd);clReleaseProgram(OpenCLProgram);clReleaseCommandQueue(cqCommandQueue);clReleaseContext(GPUContext);clReleaseMemObject(GPUVector1);clReleaseMemObject(GPUVector2);clReleaseMemObject(GPUOutputVector); clWaitForEvents(1, &event);cl_ulong start = 0, end = 0;double total_time; clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &start, NULL);clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL);total_time = end - start; printf("\nExecution time in milliseconds = %0.3f ms", (total_time / 1000000.0) );printf("\nExecution time in seconds = %0.3f s\n\n", ((total_time / 1000000.0))/1000 ); return 0; }CPU 代码是简单的 C 程序,和上面一样计算同样的队列求和。为了计算消耗的时间,我们使用 time.h中的库。代码如下:
#include #include #include int InitialData1[80] = {37,50,54,50,56,0,43,43,74,71,32,36,16,43,56,100,50,25,15,17,37,50,54,50,56,0,43,43,74,71,32,36,16,43,56,100,50,25,15,17,37,50,54,50,56,0,43,43,74,71,32,36,16,43,56,100,50,25,15,17,37,50,54,50,56,0,43,43,74,71,32,36,16,43,56,100,50,25,15,17}; int InitialData2[80] = {35,51,54,58,55,32,36,69,27,39,35,40,16,44,55,14,58,75,18,15,35,51,54,58,55,32,36,69,27,39,35,40,16,44,55,14,58,75,18,15,35,51,54,58,55,32,36,69,27,39,35,40,16,44,55,14,58,75,18,15,35,51,54,58,55,32,36,69,27,39,35,40,16,44,55,14,58,75,18,15};#define SIZE 600000int main(int argc, char **argv) { time_t start, stop; clock_t ticks;time(&start); // Two integer source vectors in Host memory int HostVector1[SIZE], HostVector2[SIZE]; //Output Vector int HostOutputVector[SIZE]; // Initialize with some interesting repeating data //int n; for(int c = 0; c < SIZE; c++) { HostVector1[c] = InitialData1[c%20]; HostVector2[c] = InitialData2[c%20]; HostOutputVector[c] = 0; }for(int i = 0; i < SIZE; i++) {HostOutputVector[i] = HostVector1[i] + HostVector2[i];ticks = clock(); } time(&stop);printf("\nExecution time in miliseconds = %0.3f ms",((double)ticks/CLOCKS_PER_SEC)*1000);printf("\nExecution time in seconds = %0.3f s\n\n", (double)ticks/CLOCKS_PER_SEC);return 0; }
04、交叉编译应用
>>>同一个 Makefile 可以用于交叉编译 GPU 和 CPU 应用。你需要注意下面的三个变量。根据你的系统做相应的调整:
ROOTFS_DIR -> Apalis iMX6 文件系统路径
APPNAME -> 应用的名字
TOOLCHAIN -> 交叉编译工具的路径
export ARCH=arm export ROOTFS_DIR=/usr/local/toradex-linux-v2.5/oe-core/build/out-glibc/sysroots/apalis-imx6APPNAME = proc_sample TOOLCHAIN = /home/prjs/toolchain/gcc-linaroCROSS_COMPILER = $(TOOLCHAIN)/bin/arm-linux-gnueabihf- CC= $(CROSS_COMPILER)gcc DEL_FILE = rm -rf CP_FILE = cp -rf TARGET_PATH_LIB = $(ROOTFS_DIR)/usr/lib TARGET_PATH_INCLUDE = $(ROOTFS_DIR)/usr/include CFLAGS = -DLINUX -DUSE_SOC_MX6 -Wall -std=c99 -O2 -fsigned-char -march=armv7-a -mfpu=neon -DEGL_API_FB -DGPU_TYPE_VIV -DGL_GLEXT_PROTOTYPES -DENABLE_GPU_RENDER_20 -I../include -I$(TARGET_PATH_INCLUDE) LFLAGS = -Wl,--library-path=$(TARGET_PATH_LIB),-rpath-link=$(TARGET_PATH_LIB) -lm -lglib-2.0 -lOpenCL -lCLC -ldl -lpthread OBJECTS = $(APPNAME).o first: all all: $(APPNAME) $(APPNAME): $(OBJECTS) $(CC) $(LFLAGS) -o $(APPNAME) $(OBJECTS) $(APPNAME).o: $(APPNAME).c $(CC) $(CFLAGS) -c -o $(APPNAME).o $(APPNAME).c clean: $(DEL_FILE) $(APPNAME)在应用所在的目录中保持 Makefile 文件,然后运行 make。
将编译生成的文件复制到 Apalis iMX6 开发板上。测试结果
在执行两个应用程序后,我们得到以下结果:
### Processor time Execution time in miliseconds = 778.999 ms Execution time in seconds = 0.779 s ### GPU time Execution time in milliseconds = 12.324 ms Execution time in seconds = 0.012 s根据以上结果,我们可以很清楚地看到在 Apalis iMX6Q GPU 上使用 OpenCL 能够加速队列求和运算。
总结
>>>借助 OpenCL,可以在不同设备从图形显卡到超级计算机以及嵌入式设备,运行代码。用户还可以进一步结合,例如在 OpenCV 中使用 OpenCL 提高计算机视觉的性能。
对于绝大多数嵌入式应用,Linux 是正确的选择。Linux 编译系统,例如 Buildroot 和 OpenEmbedded,能够创建定制化的 BSP,裁剪到任意的大小,并且提供丰富的应用和 SDK,从 gstreamer、Python 到 node.js 等。基于 OpenEmbedded/Yocto 的 Linux 是 Toradex 支持的默认发行版本,开发社区还提供多种开发语言环境和框架。
现在的 GUI 可以使用 Qt、HTML5 来开发,以至于有点难于选择。
你也可以使用 NDK 基于 C/C++ 和 C# 开发你的应用,使用 Qt 作为显示框架或者利用 Cordova 或者 React Native 框架用 Javascript 开发移动应用
故我在
点击下方卡片 关注我
↓↓↓
相关文章:

linux | 苹果OpenCL(提高应用软件如游戏、娱乐以及科研和医疗软件的运行速度和响应)
点击上方"蓝字"关注我们 01、引言 >>> OpenCL 1.0 于 2008 年 11 月发布。 OpenCL 是为个人电脑、服务器、移动设备以及嵌入式设备的多核系统提供并行编程开发的底层 API。OpenCL 的编程语言类似于 C 语言。其可以用于包含 CPU、GPU 以及来自主流制造商如 …...
算法-UKF中Sigma点生成
void UKF::MakeSigmaPoints() {Eigen::VectorXd x_aug_ Eigen::VectorXd(n_x_);x_aug_.head(n_x_) x_;Eigen::MatrixXd P_aug Eigen::MatrixXd::Zero(n_x_, n_x_);// 转成正定矩阵P_aug pdefinite_svd(P_);// LLT分解Eigen::MatrixXd L P_aug.llt().matrixL();sigma_point…...

精选五款热门骨传导耳机分享,让你避免踩坑的陷阱
因为骨传导耳机独特的佩戴方式和声音的传播方式,受到了小耳、油耳以及运动爱好者的的喜爱,但也由于市面上的骨传导耳机品牌越来越多,很多朋友不知道该怎么选择,今天我挑选出市面上体验感较好,各方面比较出色的骨传导给…...

「字符串」前缀函数|KMP匹配:规范化next数组 / LeetCode 28(C++)
概述 为什么大家总觉得KMP难?难的根本就不是这个算法本身。 在互联网上你可以见到八十种KMP算法的next数组定义和模式串回滚策略,把一切都懂得特别混乱。很多时候初学者的难点根本不在于这个算法本身,而是它令人痛苦的百花齐放的定义。 有…...

python人工智能002:jupyter基本使用
小知识:将jupyter修改为中文,修改用户变量, 注意是用户变量,不是系统变量 新增用户变量 变量名:LANG 变量值:zh_CN.UTF8 然后重启jupyter 上一章的软件安装完成之后,就可以创建文件夹来学习写…...
Linux使用 firewalld管理防火墙命令
Linux 发行版中使用的动态防火墙管理工具。使用 firewalld,你可以查看防火墙状态、当前配置的规则以及开放的端口。以下是一些常用的 firewalld 命令来管理和查看防火墙状态及端口配置。 1. 查看防火墙状态 检查 firewalld 是否正在运行 sudo systemctl status f…...

二叉树(三)
一、二叉树的遍历 二叉树遍历是按照某种特定的规则,依次对二叉树中的结点进行相应的操作,并且每个结点只操作一次。 1.前序遍历(先根遍历) 前序遍历(Preorder Traversal也叫先序遍历)——根、左子树、右…...

05--kubernetes组件与安装
前言:终于写到kubernetes(k8s),容器编排工具不止k8s一个,它的优势在于搭建集群,也是传统运维和云计算运维的第一道门槛,这里会列出两种安装方式,详细步骤会在下文列出,文…...
EmguCV学习笔记 VB.Net和C# 下的OpenCv开发 C# 目录
版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。 EmguCV是一个基于OpenCV的开源免费的跨平台计算机视觉库,它向C#和VB.NET开发者提供了OpenCV库的大部分功能。 教程VB.net版本请访问…...
探索TensorFlow:深度学习的未来
标题:探索TensorFlow:深度学习的未来 在当今快速发展的人工智能领域,TensorFlow无疑是最耀眼的明珠之一。TensorFlow是由Google Brain团队开发的一个开源机器学习框架,它以其强大的灵活性、易用性和高效的性能,迅速成…...

探索地理空间分析的新世界:Geopandas的魔力
文章目录 探索地理空间分析的新世界:Geopandas的魔力背景:为何选择Geopandas?这个库是什么?如何安装这个库?五个简单的库函数使用方法场景应用:Geopandas在实际工作中的应用常见bug及解决方案总结 探索地理…...

如何为网站申请免费SSL证书?
一、准备阶段 确定证书类型: 对于大多数个人博客和小型企业网站,DV(域名验证)SSL证书已足够使用,因为它仅验证域名所有权,成本较低且验证快速。准备域名: 确保你拥有一个有效的域名,…...

Java项目集成RocketMQ
文章目录 1.调整MQ的配置1.进入bin目录2.关闭broker和namesrv3.查看进程确认关闭4.编辑配置文件broker.conf,配置brokerIP15.开放端口109116.重新启动1.进入bin目录2.启动mqnamesrv和mqbroker1.启动 NameServer 并将输出重定向到 mqnamesrv.log2.**启动 Broker 并将…...
如何将 Bamboo agent 能力迁移到极狐GitLab tag 上?
极狐GitLab 是 GitLab 在中国的发行版,专门面向中国程序员和企业提供企业级一体化 DevOps 平台,用来帮助用户实现需求管理、源代码托管、CI/CD、安全合规,而且所有的操作都是在一个平台上进行,省事省心省钱。可以一键安装极狐GitL…...
正则表达式入门:Python ‘ re ‘ 模块详解
正则表达式(Regular Expression,简称 re)是一种强大而灵活的工具,广泛用于字符串匹配、替换和分割等操作,尤其在处理网页爬虫数据时非常有用。Python 提供了 " re " 模块来支持正则表达式的使用,…...
thinkphp8.0+aliapy(支付宝)pc网站支付
环境:宝塔-centOS8.5,php8.3 第一步:安装alipay v3版本的安装依赖包; composer require alipaysdk/openapi:dev第二步:根据官方文档,把支付相关的类引用进来; <?php declare (strict_types 1);namespace app\p…...

高速信号的眼图、加重、均衡
目录 高速信号的眼图、加重、均衡眼图加重均衡线性均衡器CTLE判决反馈均衡器DFE 高速信号的眼图、加重、均衡 眼图 通常用示波器观察接收信号波形的眼图来分析码间串扰和噪声对系统性能的影响,从而估计系统优劣程度,因而眼图分析是高速互连系统信号完整…...

2024年PMP考前冲刺必背的学习笔记,整理好给你!
项目的四大特点:临时性、独特性、变革驱动性和创造商业价值。 项目管理:将知识、技能、工具与技术应用于项目活动,以满足项目的要求 Pestle:P政治,E经济,S社会,T技术,L法律,E环境 …...
增加服务器带宽可以提高资源加载速度吗?
答案是可以的 ,增加服务器带宽通常能够提高资源加速速度。带宽是服务器与互联网之间传输数据的速率,它决定了在单位时间内可以传输的数据量。以下是增加带宽如何提高资源加速速度的几个方面: 1.更快的数据传输:带宽增加后…...
汽车EDI: NAVISTAR EDI对接
Navistar International Corporation 是一家美国商用车辆制造公司,总部位于伊利诺伊州的Lisle。公司以生产中型和重型卡车、公共汽车、柴油发动机和底盘闻名,其产品广泛应用于运输、建筑、和农业等行业。Navistar 的历史可以追溯到1831年,由国…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...

【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...