当前位置: 首页 > news >正文

yolo V8训练 长条状目标

1、说明

目标数据集合中有很多长条状图片,如果直接Resize 会严重拉伸,因此采用把长条图像裁剪成2段,然后将裁剪后的2段图片拼接在一起。

2、代码

2.1 C++ 代码 (部署,模型推理时C++ )

#include <stdio.h>
#include<string>
#include <vector>
#include <sys/stat.h>
#include<opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>  
#include <opencv2/imgproc/imgproc.hpp>  
#include <opencv2/core/core.hpp>  
using namespace std;
using namespace cv;
int main()
{cv::Mat img = cv::imread("_1.jpg", 1);cv::Mat dst;int src_h = img.rows;  int	src_w = img.cols;std::cout << "src_h " << img.rows << std::endl;std::cout << "src_w " << img.cols << std::endl;if (src_h > src_w && src_h > 600){int dst_h = int(src_h / 2) + 16;int dst_w = src_w * 2;cv::Mat blank(dst_h, dst_w, CV_8UC3, cv::Scalar(0, 0, 0));cv::Mat blank_1 = blank(cv::Rect(0, 0, src_w, dst_h));cv::Mat blank_2 = blank(cv::Rect(src_w - 1, 0, src_w, dst_h - 16));blank_1 += img(cv::Rect(0, 0, src_w, dst_h));blank_2 += img(cv::Rect(0, dst_h - 16 - 1, src_w, dst_h - 16));dst = blank.clone();}else if (src_w > 600 && src_h > 100){int dst_h = src_h * 2;                    // 566*2      = 1332int dst_w = int(src_w / 2) + 16;              // 1658/2 +16 = 845cv::Mat blank(dst_h, dst_w, CV_8UC3, cv::Scalar(0, 0, 0));cv::Mat blank_1 = blank(cv::Rect(0, 0, dst_w, src_h));cv::Mat blank_2 = blank(cv::Rect(0, src_h - 1, dst_w - 16, src_h));blank_1 += img(cv::Rect(0, 0, dst_w, src_h));blank_2 += img(cv::Rect(dst_w - 16 - 1, 0, dst_w - 16, src_h));dst = blank.clone();}std::cout << "dst_h " << img.rows << std::endl;std::cout << "dst_w " << img.cols << std::endl;cv::imshow("src", img);cv::imshow("dst", dst);cv::waitKey(0);
}

2.2 python 代码(训练时处理数据)

import os
import numpy as np
import copy
import shutil
import cv2def cv_imread(file_path):#imdedcode读取的是RGB图像cv_img = cv2.imdecode(np.fromfile(file_path,dtype=np.uint8),-1)return cv_imgsrc_path_root = "E:/trip/"
dst_path_root = "E:/strip_combine/"
images_names=os.listdir(src_path_root)
print(images_names)
print("图片张数:",len(images_names))
for img_name in images_names:image_path = src_path_root+img_nameprint(image_path)print(img_name[-4:])if img_name[-4:] != "json":img = cv_imread(image_path)cv2.imshow("img",img)print(img.shape)shape0 = img.shape[0]shape1 = img.shape[1]img_height = shape0img_width = shape1image_save_path = dst_path_root + img_nameif img_height > img_width:# 使用zeros()方法创建图像对象src_h, src_w, c = img.shapedst_h = int(src_h/2)+16dst_w = src_w * 2blank = np.zeros((dst_h, dst_w, c), dtype=np.uint8)blank[0:dst_h, 0:src_w, :] = img[0:dst_h, 0:src_w, :]blank[0:dst_h-16:, src_w:2*src_w, :] = img[dst_h-16:2*dst_h-32, 0:src_w, :]cv2.imshow('blank', blank)cv2.imwrite(image_save_path, blank)cv2.waitKey(10)if img_height < img_width:# 使用zeros()方法创建图像对象src_h, src_w, c = img.shapedst_w = int(src_w/2)+16dst_h = src_h*2blank = np.zeros((dst_h, dst_w, c), dtype=np.uint8)blank[0:src_h, 0:dst_w, :] = img[0:src_h, 0:dst_w, :]blank[src_h:2*src_h, 0:dst_w-16:, :] = img[0:src_h, dst_w-16:2*dst_w-32, :]cv2.imshow('blank', blank)cv2.imwrite(image_save_path, blank)cv2.waitKey(10)

3 附一张效果图

在这里插入图片描述

相关文章:

yolo V8训练 长条状目标

1、说明 目标数据集合中有很多长条状图片&#xff0c;如果直接Resize 会严重拉伸&#xff0c;因此采用把长条图像裁剪成2段&#xff0c;然后将裁剪后的2段图片拼接在一起。 2、代码 2.1 C 代码 &#xff08;部署&#xff0c;模型推理时C &#xff09; #include <stdio.h…...

数据结构与算法 - 设计

1. LRU缓存 请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。 实现 LRUCache 类&#xff1a; LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存int get(int key) 如果关键字 key 存在于缓存中&#xff0c;则返回关键字的值&#xff0…...

62 网络设备的暗藏的操控者SNMP

一 SNMP 简介 SNMP(Simple Network Management Protocol,简单网络管理协议)广泛用于网络设备的远程管理和操作。SNMP允许管理员通过NMS对网络上不同厂商、不同物理特性、采用不同互联技术的设备进行管理,包括状态监控、数据采集和故障处理。 二 SNMP 网络架构 NMS(Netwo…...

华硕飞行堡垒键盘全部失灵【除电源键】

华硕飞行堡垒FX53VD键盘全部失灵【除电源键】 前言一、故障排查二、发现问题三、使用方法总结 前言 版本型号&#xff1a; 型号 ASUS FX53VD&#xff08;华硕-飞行堡垒&#xff09; 板号&#xff1a;GL553VD 故障情况描述&#xff1a; 键盘无法使用&#xff0c;键盘除开机键外…...

前端字符串将其分割成长度为 32 的子字符串数组

技巧分享&#xff1a;将字符串切割后&#xff0c;对list数据进行数据处理 要实现这个需求&#xff0c;可以编写一个简单的 JavaScript 函数来处理字符串并将其分割成长度为 32 的子字符串数组。下面是一个具体的实现示例&#xff1a; function splitStringIntoChunks(str) {l…...

小学二年级数学精选试题

小学二年级数学精选试题...

练习题 - 探索正则表达式re功能

在编程的世界里,正则表达式(Regular Expression, 简称re)是一种强大的工具,它能帮助我们有效地处理文本数据。从简单的查找到复杂的字符串操作,正则表达式都能轻松应对。特别是在数据清理、文本分析以及自动化处理等场景中,正则表达式更是不可或缺的利器。本篇文章将深入…...

【Oracle 11G 配置使用教程1】

Oracle11G配置使用教程1 引言图像方式创建数据库一、打开 Database Configuration Assistant二、创建数据库操作三、选择数据库模版四、配置数据库标识五、配置数据库标识六、创建数据库 配置监听一、打开创建监听程序二、打开创建监听程序三、重新配置监听程序四、选择监听程序…...

【ubuntu24.04】docker pull 配置

Docker 镜像加速器 的方式,看起来不行。阿里云的要先登录。手动拉取tar包的方式,官方dockerhub看起来本身没提供。docker pull 的 代理与 环境变量的代理不同因此,docker pull gitlab/gitlab-ce:17.3.0-ce.0 使用了全局代理也会失败参考官方文档: Use a proxy server with …...

《机器学习》—— 通过下采样方法实现银行贷款分类问题

文章目录 一、什么是下采样方法&#xff1f;二、通过下采样方法实现银行贷款分类问题三、下采样的优缺点 一、什么是下采样方法&#xff1f; 机器学习中的下采样&#xff08;Undersampling&#xff09;方法是一种处理不平衡数据集的有效手段&#xff0c;特别是在数据集中某些类…...

Synchronized重量级锁原理和实战(五)

在JVM中,每个对象都关联这一个监视器,这里的对象包含可Object实例和Class实例.监视器是一个同步工具,相当于一个凭证,拿到这个凭证就可以进入临界区执行操作,没有拿到凭证就只能阻塞等待.重量级锁通过监视器的方式保证了任何时间内只允许一个线程通过监视器保护的临界区代码. …...

linux常用网络工具汇总三

linux常用网络工具汇总 6. 抓包工具6.1 wireshark安装界面介绍使用过滤器TCP协议示例关于wireshark的缺点 6.2 tcpdump命令格式关键字使用关于tcpdump的缺点 6.3 fiddler6.4 burpsuite 6. 抓包工具 6.1 wireshark Wireshark&#xff08;前称Ethereal&#xff09;是一个网络封…...

Linux中nano编辑器详解

nano 是一个简单的文本编辑器&#xff0c;通常预装在大多数 Linux 发行版中。它非常适合初学者使用&#xff0c;因为它有一个用户友好的界面和易于理解的命令集。下面是对 nano 编辑器的详细说明。 启动 nano 要启动 nano 并打开一个文件进行编辑&#xff0c;你可以在终端中输…...

26-vector arraylist和linkedlist的区别

‌Vector, ArrayList, 和 LinkedList 是Java中常见的三种列表实现&#xff0c;它们各自具有不同的特点和适用场景。‌ ‌同步性与线程安全‌&#xff1a; ‌Vector‌ 是同步的&#xff0c;即线程安全的&#xff0c;它的所有方法都是同步的&#xff0c;可以由两个线程安全地访问…...

20-redis穿透击穿雪崩

Redis中的缓存穿透、‌缓存击穿和缓存雪崩是三种常见的缓存问题&#xff1a;‌ 缓存穿透&#xff1a;‌指缓存和数据库中都没有的数据&#xff0c;‌但用户还是源源不断地发起请求&#xff0c;‌导致每次请求都会直接访问数据库&#xff0c;‌从而可能压垮数据库。‌缓存击穿&…...

Docker使用教程

Docker 名词解释 镜像&#xff08;image&#xff09;&#xff1a;Docker镜像就是一个模板&#xff0c;可以通过这个模板来创建容器服务。容器&#xff08;container&#xff09;&#xff1a;Docker利用容器技术&#xff0c;独立运行一个或者一组应用&#xff0c;通过镜像创建…...

poi-tl循环放图片+文字说明

这几天有个任务&#xff0c;服务端导出word要求从数据库取到多张图片&#xff0c;然后输出到word中&#xff0c;并且说明一共几张&#xff0c;当前是第几张。 网上翻了很久也没有找到示例&#xff0c;不过最终难题还是得到了攻克。 因为之前的代码是有一个导出的map&#xff0c…...

数据结构之树的存储结构

一、顺序存储结构 顺序存储结构通常用于表示完全二叉树。在这种存储方式中&#xff0c;树中的节点被存储在一个连续的数组中。对于完全二叉树&#xff0c;如果父节点的索引是i&#xff08;假设从0开始计数&#xff09;&#xff0c;那么它的左子节点的索引是2i1&#xff0c;右子…...

Zotero 常用插件介绍

1. Zotero 插件安装方法 下载以 .xpi 结尾的插件&#xff1b;打开 Zotero → 工具 → 插件 → 右上小齿轮图标 → Install Add-on From File ... → 选择下载好的 .xpi 插件安装 → 重启 Zotero 2. 常用插件介绍 2.1. Scholaread - 靠岸学术 Zotero 英文文献相关插件&#xf…...

WebSocket协议解析

文章目录 一、HTTP协议与HTTPS协议1.HTTP协议的用处2.HTTP协议的特点3.HTTP协议的工作流程4.HTTPS协议的用处5.HTTPS协议的特点6.HTTPS协议的工作流程 二、WebSocket协议出现的原因1. 传统的HTTP请求-响应模型2. 轮询&#xff08;Polling&#xff09;3. 长轮询&#xff08;Long…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分&#xff1a;体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分&#xff1a;体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...