当前位置: 首页 > news >正文

【动态规划算法题记录】最长/最大 问题汇总 (leetcode)

目录

  • 32. 最长有效括号
    • 思路
    • 代码
  • 300. 最长递增子序列
    • 思路
    • 代码
  • 674. 最长连续递增序列
    • 思路1:双指针
    • 代码1:双指针
    • 思路2:dp
    • 代码2:dp
  • 718. 最长重复子数组
    • 思路1:dp
    • 代码1:dp
    • 思路2:dp优化
    • 代码2:dp优化
  • 1143. 最长公共子序列
    • 思路
    • 代码
  • 1035. 不相交的线(最大连线数)
    • 思路
    • 代码
  • 53. 最大子序和
    • 思路1:贪心
    • 代码1:贪心
    • 思路2:dp
    • 代码2:dp

32. 最长有效括号

题目🔗

给你一个只包含 '('')' 的字符串,找出最长有效(格式正确且连续)括号子串的长度。

示例 1
输入:s = "(()"
输出:2
解释:最长有效括号子串是 "()"
示例 2
输入:s = ")()())"
输出:4
解释:最长有效括号子串是 "()()"
示例 3
输入:s = ""
输出:0

思路

首先,我们定义一个dp数组,表示以第i个元素结尾的字符串的最长有效括号的长度。

对于dp[i]来说,它可能有以下两种情况:

  • s[i] == '(':这时他是无法和前面的括号组成有效括号对的,所以dp[i] = 0
  • s[i] == ')':这时我们需要确定它是否能和前面的元素组成有效括号对,那么还需要去观察s[i-1]
    • s[i-1] == '('s[i-1]刚好和s[i]组成一对有效括号,长度为2。那么这种情况下我们可以推导出: d p [ i ] = d p [ i − 2 ] + 2 dp[i] = dp[i-2] + 2 dp[i]=dp[i2]+2
    • s[i-1] == ')':对于这种情况来说,我们不知道s[i-1]是否和前面的元素组成有效括号,但无论如何,dp[i-1]中存放的总是以s[i-1]结尾的字符串的最长有效括号长度。假设s[i-1]是有效的括号对之一,那么与他配对的括号index就是i-dp[i-1],于是乎我们就可以找到和s[i]配对的位置i-dp[i-1]-1,这样如果s[i-dp[i-1]-1] == '(',那么s[i]就能与他配对上。那么我们就可以推导出: d p [ i ] = d p [ i − 1 ] + 2 + d p [ i − d p [ i − 1 ] − 2 ] dp[i] = dp[i-1] + 2 + dp[i-dp[i-1]-2] dp[i]=dp[i1]+2+dp[idp[i1]2]

注意,上面要需要加上 d p [ i − d p [ i − 1 ] − 2 ] dp[i-dp[i-1]-2] dp[idp[i1]2],这是因为如果我们判定s[i-dp[i-1]-1] == '('s[i]配对的话,还需要考虑s[i-dp[i-1]-1]之前的情况。

代码

class Solution {
public:int longestValidParentheses(string s) {vector<int> dp(s.size(), 0);int ans = 0;for(int i = 1; i < s.size(); ++i){if(s[i] == ')'){// 前面一个是(的情况,直接配对成功if(s[i - 1] == '('){dp[i] = 2;// 加上前面配对的数量if(i - 2 >= 0) dp[i] += dp[i - 2];}// 前面一个也是),但是有配对的else if(dp[i - 1] > 0){// 判断匹配位置的符号是不是(,如果是则可以配对if((i - dp[i - 1] - 1) >= 0 && s[i - dp[i - 1] - 1] == '('){dp[i] = dp[i - 1] + 2;// 加上前面配对的数量if(i - dp[i - 1] - 2 >= 0) dp[i] += dp[i - dp[i - 1] - 2];}}}ans = max(ans, dp[i]);}return ans;}
};

300. 最长递增子序列

题目🔗

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4
示例 2
输入:nums = [0,1,0,3,2,3]
输出:4
示例 3
输入:nums = [7,7,7,7,7,7,7]
输出:1

思路

dp[i]表示第i个数为结尾的子序列的最长严格递增长度。

很容易的就能想到,我们要计算的dp[i]一共有两种情况:
- nums[i] > nums[i - 1]:此时dp[i] = dp[i-1] + 1
- nums[i] < nums[i - 1]:此时dp[i] = dp[i-1]

但是如果我们简单的将代码写成这样:

int lengthOfLIS(vector<int>& nums) {vector<int> dp(nums.size(), 1);for(int i = 1; i < nums.size(); ++i){if(nums[i] > nums[i - 1])dp[i] = dp[i - 1] + 1;else dp[i] = dp[i-1];}return dp[nums.size()-1];}

当测试用例为:nums = [4,10,4,3,8,9]。我们打印出上面代码计算出的dp数组:1 2 2 2 3 4 。可以发现并不是我们所期望的那样,当i=4时,dp[4]应该为2,而不是3

我们计算成3是因为:对于子数组[4,10,4,3]来说,它的最大递增子序列为4, 10。我们如果只是简单的判断nums[4] > nums[3],就执行dp[i] = dp[i - 1] + 1,那么就相当于是把4, 10, 8当成了最大递增子序列,然而它并不是的,所以这里就出现了判断失误。

正确的做法是,我们要把dp[i]定义为第i个数为结尾的子数组的最长严格递增长度,并且该最长严格递增子序列最后一个数必定是nums[i]

每次进行判断的时候,我们要对该子数组各个位置nums[j]进行遍历,并比较与nums[i]的大小,如果nums[i] > nums[j],那么就有dp[i] = max(dp[i], dp[j] + 1)

最终答案就是dp数组中最大的那个数。

代码

class Solution {
public:int lengthOfLIS(vector<int>& nums) {vector<int> dp(nums.size(), 1);int ans = 1;for(int i = 1; i < nums.size(); ++i){for(int j = 0; j < i; ++j){if(nums[i] > nums[j])dp[i] = max(dp[i], dp[j] + 1);}ans = max(ans, dp[i]);}return ans;}
};

674. 最长连续递增序列

题目🔗

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 lrl < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1
输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 57 在原数组里被 4 隔开。
示例 2
输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1

思路1:双指针

定义两个指针:int slowint fast

代码1:双指针

class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {int slow = 0;int ans = 0;while(slow < nums.size()){int fast = slow + 1;while(fast < nums.size() && nums[fast] > nums[fast - 1]){fast++;}ans = max(ans, fast - slow);slow = fast;}return ans;}
};

思路2:dp

dp的思路和上题类似。我们定义一个dp数组,dp[i]表示第i个数为结尾的子数组的最长连续递增长度,并且该最长连续递增序列最后一个数必定是nums[i]

与上题不一样的就是我们不在需要遍历子数组了,直接判断nums[i]nums[i - 1]的大小即可。

代码2:dp

class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {vector<int> dp(nums.size(), 1);int ans = 1;for(int i = 1; i < nums.size(); ++i){if(nums[i] > nums[i - 1]){dp[i] = max(dp[i], dp[i - 1] + 1);}ans = max(ans, dp[i]);}return ans;}
};

718. 最长重复子数组

题目🔗

给两个整数数组 nums1nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度 。

示例 1
输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
输出:3
解释:长度最长的公共子数组是 [3,2,1]
示例 2
输入:nums1 = [0,0,0,0,0], nums2 = [0,0,0,0,0]
输出:5

思路1:dp

dp[i][j]表示数组nums1i个元素数组nums2j个元素的最长公共子数组的长度。其实也是和上题一样的。

代码1:dp

我们可以很快写出代码:

class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp(nums1.size(), vector<int>(nums2.size(), 0));int ans = 0;// dp数组初始化for(int i = 0; i < nums1.size(); ++i){if(nums2[0] == nums1[i]) dp[i][0] = 1;if(dp[i][0] > ans) ans = dp[i][0];}for(int j = 0; j < nums2.size(); ++j){if(nums1[0] == nums2[j]) dp[0][j] = 1;if(dp[0][j] > ans) ans = dp[0][j];}// dp数组推导for(int i = 1; i < nums1.size(); ++i){for(int j = 1; j < nums2.size(); ++j){if(nums1[i] == nums2[j])dp[i][j] = dp[i - 1][j - 1] + 1;if(dp[i][j] > ans) ans = dp[i][j];}}return ans;}
};

注意初始化的时候我们也要去更新ans的大小,不然会漏结果。

思路2:dp优化

其实,我们可以将dp[i][j]定义为数组nums1i-1个元素数组nums2j-1个元素的最长公共子数组的长度,也就是在nums1前增加一行,nums2前增加一列:
在这里插入图片描述
这样我们在定义数组的时候就已经初始化好了,不必额外去for循环初始化:vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));

代码2:dp优化

class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int ans = 0;// dp数组推导for(int i = 1; i <= nums1.size(); ++i){for(int j = 1; j <= nums2.size(); ++j){if(nums1[i - 1] == nums2[j - 1])dp[i][j] = dp[i - 1][j - 1] + 1;if(dp[i][j] > ans) ans = dp[i][j];}}return ans;}
};

1143. 最长公共子序列

题目🔗

给定两个字符串 text1text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,"ace""abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例 1
输入:text1 = "abcde", text2 = "ace"
输出:3
解释:最长公共子序列是 "ace" ,它的长度为 3
示例 2
输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3
示例 3
输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0

思路

这题和上题的不同之处在于 公共子序列原字符串相对有序的。感觉这题有点像300. 最长递增子序列718. 最长重复子数组的结合体。

上一题以i-1j-1是因为子数组必须要求是连续的,如果不连续,公共子数组直接归零,下一个子数组不能继承前一个子数组的公共子数组长度。

子序列则不一样,允许中间有间隔,下一个子序列可以继承前一个子序列的公共子序列长度

这样说很抽象,我们举个例子。比如说两个数组nums1 = [1,2,3,4,5], nums2 = [1,2,3,8,5] 。在index=3的时候出现分歧了,如果是公共子数组,index=3时,其公共子数组必须要归零,如果不归零,会影响index=4的判断。而如果是公共子序列,index=3可以保留index=2的最长子序列数,继而在index=4时继续递增。

代码

class Solution {
public:int longestCommonSubsequence(string text1, string text2) {int len1 = text1.size();int len2 = text2.size();vector<vector<int>> dp(len1 + 1, vector<int>(len2 + 1, 0));for(int i = 1; i <= len1; ++i){for(int j = 1; j <= len2; ++j){if(text1[i - 1] == text2[j - 1]){dp[i][j] = dp[i - 1][j - 1] + 1;}else{dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}}return dp[len1][len2];}
};

1035. 不相交的线(最大连线数)

题目🔗

在两条独立的水平线上按给定的顺序写下 nums1nums2 中的整数。

现在,可以绘制一些连接两个数字 nums1[i]nums2[j] 的直线,这些直线需要同时满足:

  • nums1[i] == nums2[j]
  • 且绘制的直线不与任何其他连线(非水平线)相交。
    请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。

以这种方法绘制线条,并返回可以绘制的最大连线数。

示例 1
在这里插入图片描述
输入:nums1 = [1,4,2], nums2 = [1,2,4]
输出:2
解释:可以画出两条不交叉的线,如上图所示。 但无法画出第三条不相交的直线,因为从 nums1[1]=4nums2[2]=4 的直线将与从 nums1[2]=2nums2[1]=2 的直线相交。
示例 2
输入:nums1 = [2,5,1,2,5], nums2 = [10,5,2,1,5,2]
输出:3
示例 3
输入:nums1 = [1,3,7,1,7,5], nums2 = [1,9,2,5,1]
输出:2

思路

1143. 最长公共子序列一模一样。

代码

class Solution {
public:int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {int len1 = nums1.size();int len2 = nums2.size();vector<vector<int>> dp(len1 + 1, vector<int>(len2 + 1, 0));for(int i = 1; i <= len1; ++i){for(int j = 1; j <= len2; ++j){if(nums1[i - 1] == nums2[j - 1]){dp[i][j] = dp[i - 1][j - 1] + 1;}else{dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}}return dp[len1][len2];}
};

53. 最大子序和

题目🔗

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组是数组中的一个连续部分。

示例 1
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6
示例 2
输入:nums = [1]
输出:1
示例 3
输入:nums = [5,4,-1,7,8]
输出:23

思路1:贪心

因为数组中包含负数,所以会拉低连续子数组的和,甚至变为负数,这个时候就说明从前面计算到这里的负数,再继续计算下去肯定只会越来越小,所以我们要放弃前面的元素,从下一个元素开始重新计算。每次计算的时候我们都要记录更大的连续和,最后得到的就是全局最优的最大连续和。

代码1:贪心

class Solution {
public:int maxSubArray(vector<int>& nums) {int result = INT32_MIN;int count = 0;for(int i = 0; i < nums.size(); i++) {count += nums[i];if(count > result) result = count;if(count <= 0) count = 0;}return result;}
};

思路2:dp

dp[i]表示以nums[i-1]为结尾的最大子数组的和为dp[i]

对于每个dp[i]都有两种情况:

  • nums[i-1]加入到前面的子数组中,也就是dp[i] = dp[i - 1] + nums[i - 1]
  • nums[i-1]不加入到前面的子数组中,从它这里重新开始计算和,也就是dp[i] = numd[i - 1]
  • 我们取最大的值:dp[i] = max(nums[i - 1], dp[i - 1] + nums[i - 1])

代码2:dp

class Solution {
public:int maxSubArray(vector<int>& nums) {vector<int> dp(nums.size() + 1, 0);int ans = INT_MIN;for(int i = 1; i <= nums.size(); ++i){dp[i] = max(nums[i - 1], dp[i - 1] + nums[i - 1]);if(dp[i] > ans) ans = dp[i];}return ans;}
};

相关文章:

【动态规划算法题记录】最长/最大 问题汇总 (leetcode)

目录 32. 最长有效括号思路代码 300. 最长递增子序列思路代码 674. 最长连续递增序列思路1&#xff1a;双指针代码1&#xff1a;双指针思路2&#xff1a;dp代码2&#xff1a;dp 718. 最长重复子数组思路1&#xff1a;dp代码1&#xff1a;dp思路2&#xff1a;dp优化代码2&#x…...

2020 位示图

2020年网络规划设计师上午真题解析36-40_哔哩哔哩_bilibili 假设某计算机的字长为32位&#xff0c;该计算机文件管理系统磁盘空间管理采用位示图&#xff08;bitmap&#xff09;&#xff0c;记录磁盘的使用情况。若磁盘的容量为300GB&#xff0c;物理块的大小为4MB&#xff0c;…...

富格林:防止陷入黑幕欺诈平台

富格林指出&#xff0c;不少投资者因未做好投资准备而不慎误入黑幕欺诈平台&#xff0c;造成了不必要的亏损。投资者在投资前&#xff0c;需要时刻保持警惕&#xff0c;根据市场行情&#xff0c;作出有依据的投资决定&#xff0c;而不是依赖黑幕欺诈平台的噱头进行投资。建议投…...

Cookie、Session 、token

Cookie 优点: 简单易用: 浏览器自动管理 Cookie 的发送和接收。持久性: 可以设置过期时间&#xff0c;使其可以在浏览器关闭后依旧存在。广泛支持: 所有现代浏览器都支持 Cookie。 缺点: 安全性问题: 存储在客户端&#xff0c;容易被查看和篡改。敏感信息不应直接存储在 Co…...

Json-类型映射使用TypeFactory或者TypeReference

当你需要将JSON数据转换为Java中的复杂类型时,可以使用Jackson库中的TypeFactory或 者TypeReference。这两种方式可以帮助你处理复杂的泛型类型,例如 List<Map<String, Object>> 或者 Map<String, List<Object>>。 示例 1: 使用 TypeFactory 和 T…...

Linux shell编程学习笔记73:sed命令——沧海横流任我行(上)

0 前言 在大数据时代&#xff0c;我们要面对大量数据&#xff0c;有时需要对数据进行替换、删除、新增、选取等特定工作。 在Linux中提供很多数据处理命令&#xff0c;如果我们要以行为单位进行数据处理&#xff0c;可以使用sed。 1 sed 的帮助信息&#xff0c;功能&#xff…...

内网渗透之icmp隧道传输

原理 # 为什么要建立隧道 在实际的网络中&#xff0c;通常会通过各种边界设备软/硬件防火墙、入侵检测系统来检查对外连接的情况&#xff0c;如果发现异常&#xff0c;会对通信进行阻断。 ​ # 什么是隧道 就是一种绕过端口屏蔽的方式&#xff0c;防火墙两端的数据包通过防火墙…...

【C++ 第十五章】map 和 set 的封装(封装红黑树)

1. map 和 set 的介绍 ⭐map 与 set 分别是STL中的两种序列式容器; 它们是一种树形数据结构的容器&#xff0c;且其的底层构造为一棵红黑树; 而在上一篇文章中提到,其实红黑树本身就是一棵二叉搜索树,是基于二叉搜索树的性质对其增加了平衡的属性来提高其综合性能 ⭐当然也…...

LIN通讯

目录 1 PLinApi.h 2 TLINFrameEntry 结构体 3 自定义函数getTLINFrameEntry 4 TLINScheduleSlot 结构体 5 自定义函数 getTLINScheduleSlot 6 自定义LIN_SetScheduleInit函数 7 自定义 LIN_StartSchedule 8 发送函数 9 线程接收函数 1 PLinApi.h 这是官方头文件 ///…...

zabbix常见架构及组件

Zabbix作为一个开源的、功能全面的监控解决方案&#xff0c;广泛应用于各类组织中&#xff0c;以实现对网络、服务器、云服务及应用程序性能的全方位监控。部署架构灵活性高&#xff0c;可支持从小型单一服务器环境到大型分布式系统的多种场景。基本架构通常包括监控端&#xf…...

plsql表格怎么显示中文 plsql如何导入表格数据

在Oracle数据库开发中&#xff0c;PL/SQL Developer是一款广泛使用的集成开发环境&#xff08;IDE&#xff09;&#xff0c;它提供了丰富的功能来帮助开发人员高效地进行数据库开发和管理。在使用PL/SQL Developer时&#xff0c;许多用户会遇到表格显示中文的问题&#xff0c;以…...

chromedriver下载地址大全(包括124.*后)以及替换exe后仍显示版本不匹配的问题

Chrome for Testing availability CNPM Binaries Mirror 若已经更新了系统环境变量里的chromdriver路径下的exe&#xff0c;仍显示版本不匹配&#xff1a; 则在cmd界面输入 chromedriver 会跳出version verison与刚刚下载好的exe不匹配&#xff0c;则再输入&#xff1a; w…...

拦截器实现 Mybatis Plus 打印含参数的 SQL 语句

1.实现拦截器 package com.sample.common.interceptor;import com.baomidou.mybatisplus.extension.plugins.inner.InnerInterceptor; import lombok.extern.slf4j.Slf4j; import org.apache.ibatis.executor.Executor; import org.apache.ibatis.mapping.BoundSql; import or…...

Oracle Subprogram即Oracle子程序

Oracle Subprogram&#xff0c;即Oracle子程序&#xff0c;是Oracle数据库中存储的过程&#xff08;Procedures&#xff09;和函数&#xff08;Functions&#xff09;的统称。这些子程序是存储在数据库中的PL/SQL代码块&#xff0c;用于执行特定的任务或操作。下面详细介绍Orac…...

自然语言处理实战项目30-基于RoBERTa模型的高精度的评论文本分类实战,详细代码复现可直接运行

大家好,我是微学AI,今天给大家介绍一下自然语言处理实战项目30-基于RoBERTa模型的高精度的评论文本分类实战,详细代码复现可直接运行。RoBERTa模型是由 Facebook AI Research 和 FAIR 的研究人员提出的一种改进版的 BERT 模型。RoBERTa 通过采用更大的训练数据集、动态掩码机…...

RK3588J正式发布Ubuntu桌面系统,丝滑又便捷!

本文主要介绍瑞芯微RK3588J的Ubuntu系统桌面演示&#xff0c;开发环境如下&#xff1a; U-Boot&#xff1a;U-Boot-2017.09 Kernel&#xff1a;Linux-5.10.160 Ubuntu&#xff1a;Ubuntu20.04.6 LinuxSDK&#xff1a; rk3588-linux5.10-sdk-[版本号] &#xff08;基于rk3…...

基于GPT-SoVITS的API实现批量克隆声音

目标是将每一段声音通过GPT-SoVITS的API的API进行克隆,因为拼在一起的整个片段处理会造成内存或者缓存溢出。 将目录下的音频文件生成到指定目录下,然后再进行拼接。 通过AI工具箱生成的数据文件是这样的结构,temp目录下是没个片段生成的部分,connect_是正常拼接的音频文件…...

详解华为项目管理,附华为高级项目管理内训材料

&#xff08;一&#xff09;华为在项目管理中通过有效的沟通、灵活的组织结构、坚持不懈的努力、细致的管理和科学的考核体系&#xff0c;实现了持续的创新和发展。通过引进先进的管理模式&#xff0c;强调以客户需求为导向&#xff0c;华为不仅优化了技术管理和项目研发流程&a…...

Perl(Practical Extraction and Reporting Language)脚本

Perl&#xff08;Practical Extraction and Reporting Language&#xff09;是一种非常灵活的脚本语言&#xff0c;主要用于文本处理、系统管理以及快速原型开发等领域。Perl 脚本可以用来执行一系列任务&#xff0c;包括文件操作、网络通信、数据处理等。 下面是一些关于编写…...

单例模式详细

文章目录 单例模式介绍八种方式1、饿汉式&#xff08;静态常量&#xff09;2、饿汉式&#xff08;静态代码块&#xff09;3、懒汉式&#xff08;线程不安全&#xff09;4、懒汉式&#xff08;线程安全&#xff0c;同步方法&#xff09;5、懒汉式&#xff08;线程不安全&#xf…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

土建施工员考试:建筑施工技术重点知识有哪些?

《管理实务》是土建施工员考试中侧重实操应用与管理能力的科目&#xff0c;核心考查施工组织、质量安全、进度成本等现场管理要点。以下是结合考试大纲与高频考点整理的重点内容&#xff0c;附学习方向和应试技巧&#xff1a; 一、施工组织与进度管理 核心目标&#xff1a; 规…...

从数据报表到决策大脑:AI重构电商决策链条

在传统电商运营中&#xff0c;决策链条往往止步于“数据报表层”&#xff1a;BI工具整合历史数据&#xff0c;生成滞后一周甚至更久的销售分析&#xff0c;运营团队凭经验预判需求。当爆款突然断货、促销库存积压时&#xff0c;企业才惊觉标准化BI的决策时差正成为增长瓶颈。 一…...

【学习记录】使用 Kali Linux 与 Hashcat 进行 WiFi 安全分析:合法的安全测试指南

文章目录 &#x1f4cc; 前言&#x1f9f0; 一、前期准备✅ 安装 Kali Linux✅ 获取支持监听模式的无线网卡 &#x1f6e0; 二、使用 Kali Linux 进行 WiFi 安全测试步骤 1&#xff1a;插入无线网卡并确认识别步骤 2&#xff1a;开启监听模式步骤 3&#xff1a;扫描附近的 WiFi…...

Tableau for mac 驱动

Tableau 驱动程序安装指南 对于希望在 Mac OS 上使用 Tableau 进行数据分析的用户来说&#xff0c;确保正确安装相应的驱动程序至关重要。Tableau 支持多种数据库连接方式&#xff0c;并提供官方文档指导如何设置这些连接。 安装适用于 Mac 的 JDBC 或 ODBC 驱动程序 为了使…...

vue3+el-table 利用插槽自定义数据样式

<el-table-column label"匹配度" prop"baseMatchingLevel"><template #default"scope"><div :style"{ color: scope.row.baseMatchingLevel > 0.8 ? #00B578 : #FA5151 }">{{ scope.row.baseMatchingLevel }}&l…...

浏览器兼容-polyfill-本地服务-优化

babel和webpack结合 npx babel src --out-dir dist --presetsbabel/preset-env 这是把src下面的东西都用babel转化一下 webpack可以和babel结合使用&#xff0c;首先下载一个这东西&#xff1a; npm install babel-loader -D webpack配置&#xff1a; const path requir…...