自然语言处理实战项目30-基于RoBERTa模型的高精度的评论文本分类实战,详细代码复现可直接运行
大家好,我是微学AI,今天给大家介绍一下自然语言处理实战项目30-基于RoBERTa模型的高精度的评论文本分类实战,详细代码复现可直接运行。RoBERTa模型是由 Facebook AI Research 和 FAIR 的研究人员提出的一种改进版的 BERT 模型。RoBERTa 通过采用更大的训练数据集、动态掩码机制以及更长的训练时间等策略,在多个自然语言处理任务上取得了显著的效果提升,特别是在文本分类任务中表现出色。

文章目录
- 一、RoBERTa模型架构
- 动态掩码机制
- 无 NSP 任务
- 更大的训练数据集
- 更长的训练时间
- 二、RoBERTa模型训练过程
- 数据准备
- RoBERTa模型训练
- RoBERTa模型模型评估
- 模型开始训练
- 三、结论
一、RoBERTa模型架构
动态掩码机制
RoBERTa 改进了 BERT 的固定掩码机制,采用了动态掩码,即每次训练时随机选择掩码位置,从而提高了模型的泛化能力。
无 NSP 任务
RoBERTa 去除了 BERT 中的下一句预测(Next Sentence Prediction, NSP)任务,简化了预训练过程。
更大的训练数据集
RoBERTa 使用了更多的训练数据,包括更多领域和来源的数据,增强了模型的鲁棒性和泛化能力。
更长的训练时间
RoBERTa 训练的时间更长,有助于模型更好地学习到语义特征。
二、RoBERTa模型训练过程
本项目实现了一个基于 RoBERTa 模型的文本分类任务。以下是实现的主要步骤:
数据
相关文章:
自然语言处理实战项目30-基于RoBERTa模型的高精度的评论文本分类实战,详细代码复现可直接运行
大家好,我是微学AI,今天给大家介绍一下自然语言处理实战项目30-基于RoBERTa模型的高精度的评论文本分类实战,详细代码复现可直接运行。RoBERTa模型是由 Facebook AI Research 和 FAIR 的研究人员提出的一种改进版的 BERT 模型。RoBERTa 通过采用更大的训练数据集、动态掩码机…...
RK3588J正式发布Ubuntu桌面系统,丝滑又便捷!
本文主要介绍瑞芯微RK3588J的Ubuntu系统桌面演示,开发环境如下: U-Boot:U-Boot-2017.09 Kernel:Linux-5.10.160 Ubuntu:Ubuntu20.04.6 LinuxSDK: rk3588-linux5.10-sdk-[版本号] (基于rk3…...
基于GPT-SoVITS的API实现批量克隆声音
目标是将每一段声音通过GPT-SoVITS的API的API进行克隆,因为拼在一起的整个片段处理会造成内存或者缓存溢出。 将目录下的音频文件生成到指定目录下,然后再进行拼接。 通过AI工具箱生成的数据文件是这样的结构,temp目录下是没个片段生成的部分,connect_是正常拼接的音频文件…...
详解华为项目管理,附华为高级项目管理内训材料
(一)华为在项目管理中通过有效的沟通、灵活的组织结构、坚持不懈的努力、细致的管理和科学的考核体系,实现了持续的创新和发展。通过引进先进的管理模式,强调以客户需求为导向,华为不仅优化了技术管理和项目研发流程&a…...
Perl(Practical Extraction and Reporting Language)脚本
Perl(Practical Extraction and Reporting Language)是一种非常灵活的脚本语言,主要用于文本处理、系统管理以及快速原型开发等领域。Perl 脚本可以用来执行一系列任务,包括文件操作、网络通信、数据处理等。 下面是一些关于编写…...
单例模式详细
文章目录 单例模式介绍八种方式1、饿汉式(静态常量)2、饿汉式(静态代码块)3、懒汉式(线程不安全)4、懒汉式(线程安全,同步方法)5、懒汉式(线程不安全…...
Unity3D 自定义窗口
Unity3D 自定义窗口的实现。 自定义窗口 Unity3D 可以通过编写代码,扩展编辑器的菜单栏和窗口。 简单的功能可以直接一个菜单按钮实现,复杂的功能就需要绘制一个窗口展示更多的信息。 编辑器扩展的脚本,需要放在 Editor 文件夹中。 菜单栏…...
dubbo:dubbo整合nacos实现服务注册中心、配置中心(二)
文章目录 0. 引言1. nacos简介及安装2. 注册中心实现3. 配置中心实现4. 源码5. 总结 0. 引言 之前我们讲解的是dubbozookeeper体系来实现微服务框架,但相对zookeeper很多企业在使用nacos, 并且nacos和dubbo都是阿里出品,所以具备一些天生的契合性&#…...
个人博客指路
Pudding 个人博客 比较懒,直接 github page 了,没国内代理加速。 欢迎大佬们,踩一踩 没做留言,觉得很鸡肋。有问题可以在本文底下评论、或者直接邮件...
【STM32 HAL】多串口printf重定向
【STM32 HAL】多串口printf重定向 前言单串口printf重定向原理实现CubeMX配置Keil5配置 多串口printf重定向 前言 在近期项目中,作者需要 STM32 同时向上位机和手机发送数据,传统的 printf 重定向只能输出到一个串口。本文介绍如何实现 printf 同时输出…...
帆软报表,达梦数据库驱动上传失败
1、按照正常操作新建数据库连接,上传准备好的达梦驱动时,提示如图一需要修改SystemConfig.driverUpload为true才可以。 2、FineDB存储了数据决策系统中除平台属性配置以外的所有信息。详情请参见: FineDB 数据库简介。 3、因此管理员可通过…...
CSS选择器的优先级是如何确定的?有哪些方法可以提高选择器的效率?
CSS选择器的优先级是如何确定的? CSS选择器的优先级决定了当多个选择器同时应用于一个元素时,哪个选择器将最终生效。CSS选择器的优先级由多个因素决定,主要包括以下几个方面: 特殊性(Specificity) 特殊性…...
【MySQL】基础入门(第二篇)
1.MySQL基本数据类型 数值类型 MySQL 支持所有标准 SQL 数值数据类型。 这些类型包括严格数值数据类型(INTEGER、SMALLINT、DECIMAL 和 NUMERIC),以及近似数值数据类型(FLOAT、REAL 和 DOUBLE PRECISION)。 关键字INT是INTEGER的同义词,关键字DEC是D…...
勇闯机器学习(第二关-数据集使用)
以下内容,皆为原创,重在无私分享高质量知识,制作实属不易,请点点关注。 好戏开场了~~~(这关涉及到了加载数据集的代码,下一关,教你们安装机器学习库) 一.数据集 这一关的目标 知道数据集被分为训练集和测…...
数据库学习(进阶)
数据库学习(进阶) Mysql结构:连接层:服务层(核心层):存储引擎层:系统文件层: 存储引擎(概述):存储引擎特点:InnoDB存储引擎:(为并发条…...
redis的数据结构——跳表(Skiplist)
跳表(Skiplist)是一种用于有序数据存储的高效数据结构,它在Redis中用于实现有序集合(Sorted Set,zset)的底层存储。当有序集合中的数据较多时,Redis会选择使用跳表来存储元素,以便在保持数据有序的同时提供高效的插入、删除、查找操作。 跳表的基本结构 跳表是一种多…...
Docker服务迁移
1 备份当前服务器上的 Docker 数据 1.1 停止 Docker 服务 为了确保数据一致性,在备份之前先停止 Docker 服务: sudo systemctl stop docker1.2 备份 Docker 数据 Docker 的数据通常位于 /var/lib/docker 目录。你可以使用 tar 命令将该目录压缩成一个…...
机器学习:逻辑回归实现下采样和过采样
1、概述 逻辑回归本身是一种分类算法,它并不涉及下采样或过采样操作。然而,在处理不平衡数据集时,这些技术经常被用来改善模型的性能。下采样和过采样是两种常用的处理不平衡数据集的方法。 2、下采样 1、概念 下采样是通过减少数量较多的类…...
React原理之Fiber双缓冲
前置文章: React原理之 React 整体架构解读React原理之整体渲染流程React原理之Fiber详解 -----读懂这一篇需要对 React 整体架构和渲染流程有大致的概念 😊----- 在前面的文章中,简单介绍了 Fiber 架构,也了解了 Fiber 节点的…...
机器学习笔记三-检测异常值
检测异常值是数据预处理中非常重要的一步,因为异常值可能会影响模型的训练效果,甚至导致错误的结论。以下是几种常见的检测异常值的方法: 1. 箱线图(Box Plot): 箱线图是一种简单的统计图形,可…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
第八部分:阶段项目 6:构建 React 前端应用
现在,是时候将你学到的 React 基础知识付诸实践,构建一个简单的前端应用来模拟与后端 API 的交互了。在这个阶段,你可以先使用模拟数据,或者如果你的后端 API(阶段项目 5)已经搭建好,可以直接连…...
【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架
文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理:检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目:RankRAG:Unifying Context Ranking…...
用js实现常见排序算法
以下是几种常见排序算法的 JS实现,包括选择排序、冒泡排序、插入排序、快速排序和归并排序,以及每种算法的特点和复杂度分析 1. 选择排序(Selection Sort) 核心思想:每次从未排序部分选择最小元素,与未排…...
【汇编逆向系列】六、函数调用包含多个参数之多个整型-参数压栈顺序,rcx,rdx,r8,r9寄存器
从本章节开始,进入到函数有多个参数的情况,前面几个章节中介绍了整型和浮点型使用了不同的寄存器在进行函数传参,ECX是整型的第一个参数的寄存器,那么多个参数的情况下函数如何传参,下面展开介绍参数为整型时候的几种情…...
基于谷歌ADK的 智能产品推荐系统(2): 模块功能详解
在我的上一篇博客:基于谷歌ADK的 智能产品推荐系统(1): 功能简介-CSDN博客 中我们介绍了个性化购物 Agent 项目,该项目展示了一个强大的框架,旨在模拟和实现在线购物环境中的智能导购。它不仅仅是一个简单的聊天机器人,更是一个集…...
