当前位置: 首页 > news >正文

LLM训练推理相关概念

1. 有监督微调(Supervised Fine-Tuning)与指令微调(Instruction Fine-Tuning)对模型参数的影响

**有监督微调(Supervised Fine-Tuning, SFT)指令微调(Instruction Fine-Tuning, Instruct-Tuning)**都会对模型参数进行优化,但它们的目标和数据类型有所不同:

  • 有监督微调 (SFT)

    • 目标:在特定的任务上优化模型,使其在标注数据集上的表现更好。比如,对语音识别模型进行微调,使其在语音转文本任务上的准确率更高。
    • 数据:使用带有标签的数据,如配对的语音和文本数据。
    • 参数优化:模型的所有参数或部分参数在微调过程中都会被调整,目的是让模型更好地完成特定任务。
  • 指令微调 (Instruct-Tuning)

    • 目标:使模型能够理解和执行自然语言指令。模型不仅要理解输入的语音或文本,还要根据给定的指令来生成响应。
    • 数据:数据集通常包含自然语言指令和相应的输出(例如对话系统的输入输出对)。
    • 参数优化:指令微调也会对模型参数进行优化,调整的目的是让模型在接收到指令时能够正确生成符合指令要求的输出。

总结来说,两种微调方法都会对模型参数进行优化,只是优化的目标不同。

2. Chain of Thought (思维链) 与 In-Context Learning (上下文学习)

Chain of Thought (CoT)In-Context Learning 是两种不同的概念,但它们都与大模型在处理复杂任务时的推理和学习能力有关。

Chain of Thought (思维链)
  • 概念:Chain of Thought 是一种推理方法,在处理复杂问题时,模型会逐步展开其思维过程,类似于人类解决问题时的思维链条。这种方法允许模型将一个复杂任务分解成多个步骤,通过每一步的逐步推理来得出最终答案。
  • 应用:在复杂推理、数学计算、多步推理等任务中,CoT 可以显著提高模型的表现。例如,在解决一个需要多步计算的问题时,模型通过逐步推理,每一步都接近问题的最终解答。
  • 实现:通常在训练或推理时,给模型提供带有详细思维过程的示例,让模型学习如何逐步展开推理过程。这种训练可以通过给出详细的解题步骤或多步推理的示例来实现。
In-Context Learning (上下文学习)
  • 概念:In-Context Learning 是一种使模型无需微调就能学习新任务的能力。模型通过在推理时观察几个示例(上下文)来学习任务的模式,并应用到新的输入上。模型不会直接更新参数,而是通过提供的上下文来适应新任务。
  • 应用:在实际应用中,用户可以为模型提供几个输入输出对作为示例(上下文),模型会根据这些示例推断出任务的规律,并对新的输入进行处理。这对于零样本或小样本任务非常有效。
  • 实现:在使用 In-Context Learning 时,模型通过输入一系列示例,并在推理时根据这些示例学习如何处理新的输入。这种学习方式依赖于模型对上下文的理解能力,而不是依赖于传统的参数优化。

总结

  • 有监督微调和指令微调:都涉及模型参数的优化,但微调的目标和数据类型不同。
  • Chain of Thought:模型逐步展开思维过程,适用于多步推理任务。
  • In-Context Learning:通过提供示例(上下文)让模型学习任务模式,而无需更新模型参数。

相关文章:

LLM训练推理相关概念

1. 有监督微调(Supervised Fine-Tuning)与指令微调(Instruction Fine-Tuning)对模型参数的影响 **有监督微调(Supervised Fine-Tuning, SFT)和指令微调(Instruction Fine-Tuning, Instruct-Tun…...

IP in IP 协议

IP in IP 是一种多重IP协议,即:客户机可以发送一个IP协议内部在嵌套一个IP协议到某个特定的主机上,在由具体的主机作为路由进行转发的协议。 例如: IP in IP帧协议结构为,第一层为发送到IP in IP 路由主机的报文&…...

DAY2: HTTP请求报文和响应报文是怎样的,有哪些常见的字段?| HTTP有哪些请求方式?| GET请求和POST请求的区别

目录 HTTP请求报文和响应报文是怎样的,有哪些常见的字段? 请求报文 响应报文 HTTP有哪些请求方式? GET请求和POST请求的区别 HTTP请求报文和响应报文是怎样的,有哪些常见的字段? HTTP报文分为请求报文和响应报文…...

线性代数:每日一题1/特征值与相似对角化

设A, B 为二阶矩阵,且 AB BA , 则“A有两个不相等的特征值”是“B可对角化"的() A. 充分必要条件 B. 充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 知识点: 特征向量与特征值的关系 相似矩阵的定义和性质 n阶…...

Android UI:PopupWindow:API

文章目录 类操作 对PopupWindow的操作 创建PopupWindow对象的操作添加并显示PopupWindow的操作移除PopupWindow的操作更新PopupWindow的操作显示内容的相关操作 布局的相关操作进入退出动画的相关操作 Transition设置进入动画的相关操作Transition设置退出动画的相关操作XML设置…...

什么是DevUI?

DevUI是面向企业中后台产品的开源前端解决方案,其设计价值观基于"高效、开放、可信、乐趣"四种自然与人文相结合的理念,旨在为设计师、前端开发者提供标准的设计体系,并满足各类落地场景,是一款企业级开箱即用的产品。 …...

DAY53

作业: 运行1个服务器和2个客户端 实现效果: 服务器和2个客户端互相聊天,服务器和客户端都需要使用select模型去实现 服务器要监视2个客户端是否连接,2个客户端是否发来消息以及服务器自己的标准输入流 客户端要监视服务器是否发来…...

python中len是什么

Python len() 方法返回字符串长度。 len()方法语法: len( str ) 返回值: 返回字符串长度。 以下实例展示了len()的使用方法: #!/usr/bin/python str "this is string example....wow!!!"; print "字符串长度: ", len…...

推荐一个开源的kafka可视化客户端GUI工具(Kafka King)

大佬的博客地址: https://blog.ysboke.cn/posts/tools/kafka-king Github地址: https://github.com/Bronya0/Kafka-King Kafka-King功能清单 查看集群节点列表(完成)支持PLAINTEXT、SASL PLAINTEXT用户名密码认证(完…...

day 10 贪心算法

455. 分发饼干 饼干从大的开始利用&#xff0c;优先满足胃口大的&#xff1b; class Solution { public:int findContentChildren(vector<int>& g, vector<int>& s) {sort(g.begin(),g.end());sort(s.begin(),s.end());int res0;int indexs.size()-1;for…...

网络安全审计技术原理与应用

网络安全审计概述 概念 定义:对网络信息系统的安全相关活动信息进行获取、记录、存储、分析和利用的工作 作用:建立“事后”安全保障措施,保存网络安全事件及行为信息,为网络安全事件分析提供线索及证据,以便发现潜在网络安全威胁行为,开展网络安全风险分析及管理 常…...

计算机网络之TCP序号,确认序号和报文传输时间

开篇提示 本篇适合于了解基础知识&#xff0c;进行扩展提高的使用&#xff0c;附带考研习题以及解析。 TCP序号和确认序号的区别 TCP首部中有序号和确认序号&#xff0c;他们都是4个字节&#xff08;4B&#xff09;&#xff0c;且在数据传输中有很重要的意义&#xff0c;那么两…...

HTML优化方法

HTML编码规范 代码格式化与缩进 1.缩进规则 ​ 推荐使用空格缩进而不是Tab&#xff0c;因为不同环境下空格的效果更加一致。常见缩进量为2个或4个空格 2.标签对齐 ​ 在嵌套的HTML结构中&#xff0c;子标签应当缩进&#xff0c;以清晰地展示层级关系。 3.属性的排列 ​ …...

Codeforces Round 961 D. Cases 【SOS DP、思维】

D. Cases 题意 有一个长度为 n n n 且仅由前 c c c 个大写字母组成的字符串&#xff0c;问最少选取多少种字母为每个单词的结尾&#xff0c;使得每个单词长度不超过 k k k 思路 首先注意到最后一个字母一定要选择&#xff0c;接下来我们给出一个断言&#xff1a;如果一个…...

VirtualBox上的Oracle Linux虚拟机安装Docker全流程

1.安装docker依赖 yum install -y yum-utils device-mapper-persistent-data lvm2 2.安装docker仓库 yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo 生成docker的yum源配置到在 /etc/yum.repos.d/docker-ce.repo 3.安装D…...

LNMP安装部署

目录 一、Nginx安装部署 1.安装包下载 2.下载相关依赖工具 3. 创建运行用户 4.编译安装 5.优化路径 6.将nginx添加至系统服务 7.文件赋权 二、MySQL部署安装 1.解压 2.安装相关工具 3.创建运行用户 4.编译安装 5.修改配置文件 6.更改mysql安装目录和配置文件的属…...

django之自定义序列化器用法

在Django中&#xff0c;自定义序列化器方法通常用于处理复杂的数据转换逻辑&#xff0c;特别是在使用Django REST framework&#xff08;DRF&#xff09;时。自定义序列化器方法可以帮助你在序列化和反序列化过程中执行特定的逻辑&#xff0c;比如格式化日期、计算字段值、或者…...

20240821给飞凌OK3588-C的核心板刷Rockchip原厂的Buildroot并挂载1TB的exFAT格式的TF卡

fdisk -l df -h df -t df -T mount 20240821给飞凌OK3588-C的核心板刷Rockchip原厂的Buildroot并挂载1TB的exFAT格式的TF卡 2024/8/21 18:06 【切记&#xff0c;对于Rockchip原厂的Buildroot&#xff0c;如果你没有针对性的适配DTS&#xff1a;修改其中的GPIO口供电&#xff0c…...

多模态学习Multimodal Learning:人工智能中的多模态原理与技术介绍初步了解

多模态学习&#xff08;Multimodal Learning&#xff09;是机器学习中的一个前沿领域&#xff0c;旨在综合处理和理解来自不同模态的数据。模态可以包括文本、图像、音频、视频等。随着数据多样性和复杂性增加&#xff0c;多模态学习在自然语言处理、计算机视觉、语音识别等领域…...

外部环境连接kafka

修改配置文件外部环境连接kafka 1、kafka的docker官方镜像地址2、kafka官方介绍的三种连接方式3、方式一&#xff1a;Default configs默认配置4、方式二&#xff1a;File input&#xff08;文件输入&#xff1a;外部配置文件替换docker容器内的配置文件&#xff09;4.1、首先查…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...

【Linux】Linux安装并配置RabbitMQ

目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的&#xff0c;需要先安…...

河北对口计算机高考MySQL笔记(完结版)(2026高考)持续更新~~~~

MySQL 基础概念 数据&#xff08;Data&#xff09;&#xff1a;文本&#xff0c;数字&#xff0c;图片&#xff0c;视频&#xff0c;音频等多种表现形式&#xff0c;能够被计算机存储和处理。 **数据库&#xff08;Data Base—简称DB&#xff09;&#xff1a;**存储数据的仓库…...

jieba实现和用RNN实现中文分词的区别

Jieba 分词和基于 RNN 的分词在技术路线、实现机制、性能特点上有显著差异&#xff0c;以下是核心对比&#xff1a; 1. 技术路线对比 维度Jieba 分词RNN 神经网络分词范式传统 NLP&#xff08;规则 统计&#xff09;深度学习&#xff08;端到端学习&#xff09;核心依赖词典…...

Modbus转ETHERNET IP网关:快速冷却系统的智能化升级密钥

现代工业自动化系统中&#xff0c;无锡耐特森Modbus转Ethernet IP网关MCN-EN3001扮演着至关重要的角色。通过这一技术&#xff0c;传统的串行通讯协议Modbus得以在更高速、更稳定的以太网环境中运行&#xff0c;为快速冷却系统等关键设施的自动化控制提供了强有力的支撑。快速冷…...

Python网页自动化测试,DrissonPage库入门说明文档

&#x1f6f0;️ 基本逻辑​ 操作浏览器的基本逻辑如下&#xff1a; 创建浏览器对象&#xff0c;用于启动或接管浏览器获取一个 Tab 对象使用 Tab 对象访问网址使用 Tab 对象获取标签页内需要的元素对象使用元素对象进行交互 除此以外&#xff0c;还能执行更为复杂的操作&am…...