当前位置: 首页 > news >正文

python | rq,一个无敌的 关于Redis 的Python 库!

本文来源公众号“python”,仅用于学术分享,侵权删,干货满满。

原文链接:rq,一个无敌的 Python 库!

大家好,今天为大家分享一个无敌的 Python 库 - rq。

Github地址:https://github.com/rq/rq

现代 Web 应用和数据处理任务中,后台任务处理是一个非常重要的部分。Redis Queue (RQ) 是一个使用 Redis 作为消息队列的简单 Python 库,专注于处理异步任务。RQ 易于设置和使用,适用于需要后台处理的 Web 应用或数据处理项目。本文将详细介绍 RQ 库,包括其安装方法、主要特性、基本和高级功能,以及实际应用场景,帮助全面了解并掌握该库的使用。

安装

使用 pip 安装

可以通过 pip 直接安装 RQ 和 Redis:

pip install rq
pip install redis

安装 Redis

RQ 依赖于 Redis 服务器,需要确保已经安装并启动了 Redis。

可以使用以下命令安装 Redis:

# 在 Ubuntu 上
sudo apt-get update
sudo apt-get install redis-server# 在 macOS 上
brew install redis

启动 Redis 服务器:

redis-server

特性

  1. 易于使用:简单的 API,快速上手。

  2. 基于 Redis:利用 Redis 作为消息队列,性能高效。

  3. 支持延迟任务:可以调度定时或延迟执行的任务。

  4. 任务监控:提供简洁的任务监控和管理工具。

  5. 扩展性强:支持自定义任务处理逻辑和队列配置。

基本功能

定义任务

可以使用 RQ 定义一个后台任务,例如发送电子邮件:

import timedef send_email(recipient, subject, body):print(f"Sending email to {recipient} with subject '{subject}'")time.sleep(10)  # 模拟发送邮件的延迟print("Email sent!")

将任务加入队列

可以使用 RQ 将任务加入队列:

from rq import Queue
from redis import Redis
from my_tasks import send_email# 连接到 Redis 服务器
redis_conn = Redis()# 创建任务队列
queue = Queue(connection=redis_conn)# 将任务加入队列
job = queue.enqueue(send_email, 'user@example.com', 'Hello', 'This is a test email.')
print(f"Task ID: {job.id}")

处理任务

需要启动一个 RQ worker 来处理任务:

from rq import Worker, Queue, Connection# 连接到 Redis 服务器
redis_conn = Redis()# 创建任务队列
with Connection(redis_conn):worker = Worker(list(map(Queue, ['default'])))worker.work()

高级功能

定时任务

可以使用 RQ 调度定时任务:

from rq_scheduler import Scheduler
from datetime import datetime, timedelta# 创建任务调度器
scheduler = Scheduler(connection=redis_conn)# 定时任务:在未来10秒后执行
run_at = datetime.now() + timedelta(seconds=10)
scheduler.enqueue_at(run_at, send_email, 'user@example.com', 'Hello', 'This is a scheduled email.')

任务重试

可以为任务设置重试逻辑,以应对任务失败的情况:

from rq import Retry# 将任务加入队列,并设置重试次数
job = queue.enqueue(send_email, 'user@example.com', 'Hello', 'This is a test email.', retry=Retry(max=3))

任务结果

可以获取任务的执行结果和状态:

# 获取任务结果
result = job.result
print(f"Task Result: {result}")# 检查任务状态
status = job.get_status()
print(f"Task Status: {status}")

自定义任务处理逻辑

可以自定义任务处理逻辑,创建自己的任务队列和 worker:

from rq import Queue, Worker# 创建自定义队列
high_priority_queue = Queue('high', connection=redis_conn)
low_priority_queue = Queue('low', connection=redis_conn)# 创建自定义 worker
worker = Worker([high_priority_queue, low_priority_queue], connection=redis_conn)
worker.work()

实际应用场景

Web 应用后台任务

在 Web 应用中处理用户请求时,通过 RQ 将耗时的任务(如发送邮件、生成报告)放入后台队列,提升应用响应速度。

from flask import Flask, request, jsonify
from rq import Queue
from redis import Redis
from my_tasks import send_emailapp = Flask(__name__)
redis_conn = Redis()
queue = Queue(connection=redis_conn)@app.route('/send_email', methods=['POST'])
def handle_send_email():data = request.jsonrecipient = data['recipient']subject = data['subject']body = data['body']# 将发送邮件任务加入队列job = queue.enqueue(send_email, recipient, subject, body)return jsonify({'task_id': job.id, 'status': 'queued'})if __name__ == '__main__':app.run(debug=True)

数据处理管道

在数据处理任务中,通过 RQ 构建数据处理管道,分阶段处理大规模数据,并使用队列管理任务依赖。

def stage_one(data):processed_data = data * 2return processed_datadef stage_two(data):processed_data = data + 10return processed_datadef stage_three(data):print(f"Final processed data: {data}")# 将数据处理任务分阶段加入队列
job1 = queue.enqueue(stage_one, 5)
job2 = queue.enqueue(stage_two, depends_on=job1)
job3 = queue.enqueue(stage_three, depends_on=job2)

定时任务和作业调度

在任务调度系统中,通过 RQ 调度定时任务,如定期生成报告、数据备份等。

from rq_scheduler import Scheduler
from datetime import datetime, timedeltascheduler = Scheduler(connection=redis_conn)# 每天凌晨3点生成报告
run_at = datetime.now().replace(hour=3, minute=0, second=0, microsecond=0) + timedelta(days=1)
scheduler.enqueue_at(run_at, generate_report)

异步任务执行

在需要异步执行任务的场景中,通过 RQ 实现任务异步执行,提高系统吞吐量和响应速度。

import requestsdef fetch_url(url):response = requests.get(url)print(f"Fetched {url} with status {response.status_code}")# 异步执行 URL 抓取任务
job = queue.enqueue(fetch_url, 'https://www.example.com')

总结

RQ 库是一个功能强大且易于使用的后台任务处理工具,能够帮助开发者在各种应用场景中高效地管理和执行异步任务。通过支持简单易用的 API、高效的任务队列、强大的任务调度和监控功能,RQ 提供了强大的功能和灵活的扩展能力。本文详细介绍了 RQ 库的安装方法、主要特性、基本和高级功能,以及实际应用场景。希望本文能帮助大家全面掌握 RQ 库的使用,并在实际项目中发挥其优势。

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

相关文章:

python | rq,一个无敌的 关于Redis 的Python 库!

本文来源公众号“python”,仅用于学术分享,侵权删,干货满满。 原文链接:rq,一个无敌的 Python 库! 大家好,今天为大家分享一个无敌的 Python 库 - rq。 Github地址:https://githu…...

Redis的缓存淘汰策略

1. 查看Redis 最大的占用内存 打开redis配置文件, 设置maxmemory参数,maxmemory 是bytes字节类型, 注意转换 2. Redis默认内存多少可以用 注意: 在64bit系统下, maxmemory 设置为 0 表示不限制Redis内存使用 3. 一般生产上如何配置 一般推荐Redis 设置内…...

【C++】深度解析:用 C++ 模拟实现 priority_queue类,探索其底层实现细节(仿函数、容器适配器)

目录 ⭐前言 ✨堆 ✨容器适配器 ✨仿函数 ⭐priority_queue介绍 ⭐priority_queue参数介绍 ⭐priority_queue使用 ⭐priority_queue实现 ✨仿函数实现 ✨堆的向上调整和向下调整 ✨完整代码 ⭐前言 ✨堆 堆是一种特殊的树形数据结构,通常以二叉树的…...

1个人躲,5个人抓!《极限竞速:地平线5》全新游戏模式“捉迷藏”即将推出

风靡全球的赛车竞速游戏《极限竞速:地平线5》即将推出全新游戏模式——捉迷藏(Hide & Seek)。 《极限竞速:地平线5》日前发布了全新预告,展示了即将于 9 月 10 日推出的捉迷藏模式游戏玩法。该预告是日前举办的2024 年科隆国际游戏展 Xb…...

ARCGIS XY坐标excel转要素面

1、准备好excel 坐标 excel文件转为csv才能识别,CSV只能保留第一个工作表并且,不会保留格式。 2、在ArcGis中导入XY事件图层 创建XY事件图层 图层要素赋对象ID 将导入的图层导出为先新的图层,这样就给每个要素附加了唯一的值 选择点集转线…...

MyBatis源码系列3(解析配置文件,创建SqlSessionFactory对象)

创建SqlSessionFactory; 首先读取配置文件,使用构造者模式创建SqlSessionFactory对象。 InputStream inputStream Resources.getResourceAsStream("mybatis-config.xml");SqlSessionFactory sqlSessionFactory new SqlSessionFactoryBuilder…...

企业级web应用服务器tomcat

目录 一、Web技术 1.1 HTTP协议和B/S 结构 1.2 前端三大核心技术 1.2.1 HTML 1.2.2 CSS(Cascading Style Sheets)层叠样式表 1.2.3 JavaScript 二、tomcat的功能介绍 2.1 安装 tomcat 环境准备 2.1.1 安装java环境 2.1.2 安装并启动tomcat …...

深入浅出,探讨IM(即时通讯-聊天工具)技术架构及用户界面设计

在数字化时代的浪潮中,即时通讯(IM)工具已然成为人们日常沟通的重要方式。从微信、QQ到飞信钉、喧喧IM、企业微信、钉钉、Slack,这些IM工具不仅为我们提供了便捷的沟通方式,更在技术架构和用户界面设计上展现了独特的魅…...

小米、友邦带领恒指大反攻!

港股三大指数反弹止步2连跌,恒生科技指数一度冲高至2%,恒指收涨1.44%。盘面上,大型科技股多数表现活跃,业绩超预期,小米大涨超8%表现尤其抢眼,京东涨约4%,百度涨1.71%,网易涨2.14%&a…...

中国植物性状数据库

中国植物性状的研究主要集中在植物的生理结构和功能,‌以及它们对环境的适应性上。‌中国植物性状的多样性体现在多个方面,‌包括植物的生理结构、‌生长习性、‌以及对环境的适应性等。 中国植物性状数据库,包含了来自140个样点的1529种植物…...

[数据集][目标检测]街灯路灯检测数据集VOC+YOLO格式1893张1类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):1893 标注数量(xml文件个数):1893 标注数量(txt文件个数):1893 标注…...

C++位运算

C位运算 运算符 & 按位与 如果两个相应的二进制位都为1,则该位的结果值为1,否则为0 | 按位或 两个相应的二进制位中只要有一个为1,该位的结果值为1 ^ 按位异或 若参加运算的两个二进制位值相同则为0,否则为1 ~ 取反 ~是一元…...

Day97:云上攻防-云原生篇KubernetesK8s安全APIKubelet未授权访问容器执行

知识点: 1、云原生-K8s安全-名词架构&各攻击点 2、云原生-K8s安全-Kubelet未授权访问 3、云原生-K8s安全-API Server未授权访问 K8S集群 Kubernetes是一个开源的,用于编排云平台中多个主机上的容器化的应用,目标是让部署容器化的应用…...

招聘|头部云厂商招 PG 核心骨干 DBA【上海】

我们的招聘专区又回来了!🏃 Bytebase 作为先进的数据库 DevOps 团队协同工具 🔧,用户群里汇聚了 💗 业界优秀的 DBA,SRE,运维的同学们 🌟。 上周用户群里有小伙伴发招聘信息 &…...

继承(下)【C++】

文章目录 子类继承父类之后,子类的默认成员函数的变化构造函数编译器自动生成的构造函数程序员手动写的构造函数 拷贝构造编译器自动生成的拷贝构造函数程序员手动写的拷贝构造函数 赋值重载编译器自动生成的赋值重载程序员手动写的赋值重载 析构函数 继承与友元菱形…...

AI模拟器

一、介绍 基于鸿蒙Next模拟一个ai对话过程二、场景需求 客户服务、数据分析、个性化推荐、图像和视频处理、智能家居、交通管理、教育行业、制造等等。 三、业务步骤 第一步:输入框提出问题,发送问题, 第二部:下次发送&#xff0…...

【C++二分查找 前缀和】1658. 将 x 减到 0 的最小操作数

本文涉及的基础知识点 C二分查找 C算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 LeetCode1658. 将 x 减到 0 的最小操作数 给你一个整数数组 nums 和一个整数 x 。每一次操作时,你应当移除数组 nums 最左边或最右边的元素&am…...

验证实战知识点--(2)

1.seq中的pre_start pre_start 是 uvm_sequence 类的一个虚拟方法,用于在序列开始执行之前进行初始化和设置。这个方法在调用 start 方法前立即执行,提供了一个执行自定义初始化代码的机会。 start 方法用于启动序列的执行,而 pre_start 可以…...

【图文并茂】ant design pro 如何优雅地把删除和批量删除功能合并到一起,并抽出来成为组件

如上图所示,其实批量删除和删除应该算是一个功能 只是删除一个或多个的区别 那么接口应该用的同一个 删除一个的时候呢,就传 一个对象_id 过去 删除多个的时候,就传 多个 对象 _id 的数组过去 后端 const deleteMultipleRoles handleAs…...

监控篇之利用dcgm-exporter监控GPU指标并集成grafana大盘

一、应用场景 当环境中包含GPU节点时,需要了解GPU应用使用节点GPU资源的情况,例如GPU利用率、显存使用量、GPU运行的温度、GPU的功率等。 在获取GPU监控指标后,用户可根据应用的GPU指标配置弹性伸缩策略,或者根据GPU指标设置告警…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

数据库分批入库

今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率&#xff0c…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...