opencv之阈值处理
文章目录
- 1. 阈值处理
- 2. 阈值处理的基本原理
- 3. 常见的阈值处理方法
- 3.1 全局阈值(Global Thresholding):
- 3.2 自适应阈值(Adaptive Thresholding):
- 3.2.1 工作原理
- 3.2.2 工作步骤
- 3.2.3 适用场景
- 3.2.4 优缺点
- 自适应阈值的优点
- 自适应阈值的缺点
- 3.3 Otsu’s 方法:
- 什么是最大化类间方差
- 工作原理
- 适用场景
- 优缺点
- 4. 应用场景
- 总结
1. 阈值处理
在图像处理领域,阈值处理(Thresholding)是一种简单而有效的技术,用于将灰度图像转化为二值图像(即每个像素点要么是黑色,要么是白色)。这种处理方式常用于分割图像中的前景和背景,或者提取特定的形状或物体。
2. 阈值处理的基本原理
阈值处理的基本思想是设定一个阈值 T T T,然后遍历图像中的每一个像素。如果像素的灰度值高于阈值,就将其设为白色(通常为255);如果低于阈值,则将其设为黑色(通常为0)。公式如下:
g ( x , y ) = { 255 , i f f ( x , y ) > T 0 , i f f ( x , y ) ≤ T (1) g(x,y)= \begin{cases} 255,if\quad f(x,y)>T\\ 0, if\quad f(x,y)\leq T \end{cases} \tag{1} g(x,y)={255,iff(x,y)>T0,iff(x,y)≤T(1)
其中, f ( x , y ) f(x,y) f(x,y) 是原始图像的灰度值, g ( x , y ) g(x,y) g(x,y) 是处理后的二值图像。
3. 常见的阈值处理方法
3.1 全局阈值(Global Thresholding):
- 在这种方法中,整个图像使用同一个阈值。适合于图像对比度较高且背景简单的情况。OpenCV 中常用的函数是
cv2.threshold
。
import cv2# 读取灰度图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)# 全局阈值处理
_, thresh_global = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)# 显示结果
cv2.imshow('Global Thresholding', thresh_global)
cv2.waitKey(0)
cv2.destroyAllWindows()
3.2 自适应阈值(Adaptive Thresholding):
自适应阈值方法会根据图像的局部区域动态计算阈值,因此对于光照不均或对比度较低的图像更有效。自适应阈值根据局部窗口内的像素值计算每个像素的阈值,从而避免了全局阈值对整个图像的统一处理。
3.2.1 工作原理
自适应阈值(Adaptive Thresholding)的工作原理是根据图像局部区域的特征来动态调整阈值,从而处理光照不均或对比度不够的图像。它的主要思想是对于图像中的每一个像素,根据其周围邻域的像素值来确定一个局部阈值。这样可以避免全局阈值方法可能带来的效果不佳的问题,尤其是在图像的不同区域光照差异较大的情况下。
- 计算临近区域的加权平均值:
对于图像中的每一个像素点,自适应阈值方法会考虑该像素点周围的一定范围内的像素值。这些像素值形成了一个局部区域或窗口。
通过计算这个局部区域内的像素值的加权平均(或均值),得到一个阈值。加权平均意味着某些像素对计算结果的影响比其他像素更大,通常是窗口中心的像素权重更高。
- 获得阈值:
计算出的加权平均值(或均值)被用作该像素点的局部阈值。这个阈值代表了该像素所在局部区域的“亮度”水平。
- 对当前像素点进行处理:
使用计算得到的局部阈值来决定该像素点的类别。具体地说:
如果当前像素的值大于或等于局部阈值,则将其分类为前景(通常设为 255,白色)。
如果当前像素的值小于局部阈值,则将其分类为背景(通常设为 0,黑色)。
3.2.2 工作步骤
1. 局部邻域计算:
- 将图像划分为多个小的局部区域(通常称为窗口或块),在每个局部区域内计算一个局部阈值。这个局部阈值基于该区域内的像素值来动态确定。
2. 局部阈值计算:
对于每个局部区域,计算其局部阈值的常用方法包括均值和高斯加权平均:
-
均值自适应阈值(Adaptive Mean Thresholding): 阈值等于邻域像素的平均值减去一个常量。公式如下:
-
公式: T ( x , y ) = m e a n ( I ( x , y ) ) − C T(x,y)=mean(I(x,y))−C T(x,y)=mean(I(x,y))−C
-
其中:
- T ( x , y ) T(x,y) T(x,y)是位置 ( x , y ) (x,y) (x,y) 的阈值。
- m e a n ( I ( x , y ) ) mean(I(x,y)) mean(I(x,y)) 是位置 ( x , y ) (x,y) (x,y) 的邻域内像素的平均值。
- C C C 是一个常数,用于调整阈值。
-
在这种方法中,阈值是由邻域内像素的均值减去一个常数 C C C计算得到的。常数 C C C用于避免噪声对分割结果的影响。
-
高斯自适应阈值(Adaptive Gaussian Thresholding): 阈值等于邻域像素的加权平均值(权重为高斯窗口)减去一个常量。公式如下:
- T ( x , y ) = m e a n ( I ( x , y ) ) − C ⋅ s t d ( I ( x , y ) ) T(x,y)=mean(I(x,y))−C⋅std(I(x,y)) T(x,y)=mean(I(x,y))−C⋅std(I(x,y))
- 其中:
- T ( x , y ) T(x,y) T(x,y) 是位置 ( x , y ) (x,y) (x,y) 的阈值。
- m e a n ( I ( x , y ) ) mean(I(x,y)) mean(I(x,y)) 是位置 ( x , y ) (x,y) (x,y)的邻域内像素的平均值。
- s t d ( I ( x , y ) ) std(I(x,y)) std(I(x,y)) 是位置 ( x , y ) (x,y) (x,y)的邻域内像素的标准差。
- C C C是一个常数,用于调整阈值。
在这种方法中,阈值是由邻域内像素的均值减去标准差的 C C C倍计算得到的。这样可以更好地处理局部的光照变化和噪声。
3.二值化处理:
- 对于每个像素点,将其灰度值与计算得到的局部阈值进行比较。如果灰度值大于局部阈值,则将其设置为白色;否则,设置为黑色。
3.2.3 适用场景
- 图像光照不均匀或有明显的阴影。
- 需要在复杂背景下进行分割。
3.2.4 优缺点
自适应阈值的优点
- 适应光照变化: 能够处理光照不均匀的图像,避免全局阈值方法对不同区域处理不一致的问题。
- 局部处理: 通过局部窗口计算阈值,可以更好地处理细节和复杂背景。
自适应阈值的缺点
- 计算复杂度较高: 由于需要对每个像素计算局部阈值,处理时间相对较长。
- 参数选择: 自适应阈值方法中的参数(如窗口大小和常量)需要根据具体图像调整,以获得最佳效果。
import cv2# 读取灰度图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)# 自适应均值阈值处理
thresh_mean = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY, 11, 2)# 自适应高斯阈值处理
thresh_gaussian = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY, 11, 2)# 显示结果
cv2.imshow('Adaptive Mean Thresholding', thresh_mean)
cv2.imshow('Adaptive Gaussian Thresholding', thresh_gaussian)
cv2.waitKey(0)
cv2.destroyAllWindows()
自定义实现(不使用 OpenCV)
如果你需要从头开始实现自适应阈值处理,以下是一个简化的 Python 代码示例:
import numpy as np
import cv2def adaptive_threshold(image, block_size, C):rows, cols = image.shapepadded_image = np.pad(image, pad_width=block_size//2, mode='constant', constant_values=0)result = np.zeros_like(image)for i in range(rows):for j in range(cols):block = padded_image[i:i+block_size, j:j+block_size]mean = np.mean(block)threshold = mean - Cresult[i, j] = 255 if image[i, j] >= threshold else 0return result# 读取图像(以灰度模式)
image = cv2.imread('input_image.png', cv2.IMREAD_GRAYSCALE)# 设置自适应阈值参数
block_size = 11
constant = 2# 计算自适应阈值
adaptive_thresh = adaptive_threshold(image, block_size, constant)# 显示结果
cv2.imshow('Original Image', image)
cv2.imshow('Adaptive Threshold', adaptive_thresh)# 等待按键并销毁窗口
cv2.waitKey(0)
cv2.destroyAllWindows()# 保存处理后的图像(可选)
cv2.imwrite('adaptive_thresh_custom.png', adaptive_thresh)
3.3 Otsu’s 方法:
Otsu’s 阈值法是一种自动选择阈值的全局方法。它通过分析图像的灰度直方图,找到能够最大化类间方差(前景和背景)的阈值。Otsu’s 方法适用于双峰分布的图像(即前景和背景的灰度值分布相对独立且存在两个峰值)。
什么是最大化类间方差
最大化类间方差(Between-Class Variance)是 Otsu’s 阈值法的核心概念,旨在选择一个最佳阈值,使得图像的前景和背景之间的差异最大化。这种方法通过分析图像的灰度直方图,找到一个阈值,使得图像被分割成前景和背景后,它们之间的类间方差最大。
工作原理
Otsu’s 方法遍历所有可能的阈值,并计算每个阈值对应的类间方差,选择使类间方差最大的阈值作为最终的阈值。
适用场景
- 图像的灰度直方图呈现双峰分布。
- 需要自动选择最优阈值。
优缺点
- 优点: 自动选择阈值,适用于双峰图像的分割。
- 缺点: 对多峰分布的图像效果不佳,计算量相对较大。
公式推导链接:https://blog.csdn.net/leonardohaig/article/details/120269341
OpenCV 中可以通过设置 cv2.THRESH_OTSU
来使用。
import cv2# 读取灰度图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)# Otsu's 阈值处理
_, thresh_otsu = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)# 显示结果
cv2.imshow('Otsu Thresholding', thresh_otsu)
cv2.waitKey(0)
cv2.destroyAllWindows()
代码
import cv2
import numpy as np# 读取图像并转换为灰度图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)# 全局阈值处理
_, thresh_global = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)# 自适应阈值处理
thresh_adaptive = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY, 11, 2)# Otsu's 阈值处理
_, thresh_otsu = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)# 显示结果
cv2.imshow('Global Thresholding', thresh_global)
cv2.imshow('Adaptive Thresholding', thresh_adaptive)
cv2.imshow('Otsu Thresholding', thresh_otsu)
cv2.waitKey(0)
cv2.destroyAllWindows()
4. 应用场景
- 文档图像的二值化:用于将扫描的文档图像转换为黑白图像,以便进一步的 OCR(光学字符识别)处理。
- 物体检测:在自动化检测系统中,阈值处理可以用于分割目标物体,以便进行形状分析或特征提取。
- 医学图像处理:用于分割细胞、器官或其他生物结构。
阈值处理是图像预处理中常用的步骤,尤其适合对噪声较少、对比度较高的图像进行处理。根据具体应用的需要,可以选择合适的阈值处理方法。
总结
- 全局阈值适合简单、光照均匀的图像,计算速度快但对复杂场景效果不好。
- 自适应阈值适合光照不均的复杂图像,能更好地处理细节,但计算复杂度较高。
- Otsu’s 阈值法是一种自动选择阈值的全局方法,适合灰度直方图呈双峰分布的图像。
相关文章:
opencv之阈值处理
文章目录 1. 阈值处理2. 阈值处理的基本原理3. 常见的阈值处理方法3.1 全局阈值(Global Thresholding):3.2 自适应阈值(Adaptive Thresholding):3.2.1 工作原理3.2.2 工作步骤3.2.3 适用场景3.2.4 优缺点自适应阈值的优点自适应阈…...

oracle startup失败,ORA-01078: failure in processing system parameters
SQL> startup ORA-01078: failure in processing system parameters LRM-00109: could not open parameter file /data/oracle/product/11.2.0/db_1/dbs/initorc1.ora 出错的原因可能是:文件名字不正确,文件权限不对,文件不存在&#x…...

【python因果推断库7】使用 pymc 模型的工具变量建模 (IV)2
目录 与普通最小二乘法 (OLS) 的比较 应用理论:政治制度与GDP 拟合模型:贝叶斯方法 多变量结果和相关性度量 结论 与普通最小二乘法 (OLS) 的比较 simple_ols_reg sk_lin_reg().fit(X.reshape(-1, 1), y)print("Intercept:", simple_ols_…...

【2024数模国赛赛题思路公开】国赛B题思路丨附可运行代码丨无偿自提
2024年国赛B题解题思路 问题 1: 抽样检测方案设计 【题目分析】 分析: 目标是设计一个高效的抽样检测方案,在尽量少的样本数量下,确保在高信度水平下做出正确的接受或拒收决策。需要处理两个不同的信度要求,这对样本量的计算提…...

智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序(KNN分类器)
智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序(KNN分类器) 文章目录 一、基本原理原理流程举个例子总结 二、实验结果三、核心代码四、代码获取五、总结 智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序&#x…...
使用udp进行通信
UDP chat 头文件 #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <arpa/inet.h> #include <time…...

C#上位机使用Microsoft.Office.Interop.Excel和EPPlus库对Excel或WPS表格进行写操作
C#上位机使用Microsoft.Office.Interop.Excel和EPPlus库对Excel或WPS表格进行写操作 一、使用Microsoft.Office.Interop.Excel库 1、通过NuGet包管理器添加引用 按照下图中红框所示进行操作。 需要安装Microsoft.Office.Interop.Excel包 添加Microsoft Office 16.0 Object …...

java重点学习-redis
一.redis 穿透无中生有key,布隆过滤nul隔离 锁与非期解难题。缓存击穿过期key, 雪崩大量过期key,过期时间要随机。 面试必考三兄弟,可用限流来保底。 1.1 Redis的使用场景 根据自己简历上的业务进行回答 缓存穿透、击穿、雪崩、双…...

每日刷题(图论)
P1119 灾后重建 P1119 灾后重建 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 思路 看数据范围知道需要用到Floyd算法,但是道路是不能直接用的,需要等到连接道路的两个村庄重建好才可以使用,所以这需要按照时间依次加入中转点,…...

Requestium - 将Requests和Selenium合并在一起的自动化测试工具
Requests 是 Python 的第三方库,主要用于发送 http 请求,常用于接口自动化测试等。 Selenium 是一个用于 Web 应用程序的自动化测试工具。Selenium 测试直接运行在浏览器中,就像真正的用户在操作一样。 本篇介绍一款将 Requests 和 Seleniu…...

mysql和pg等数据库之间的数据迁移实战分享
mysql和pg等数据库之间的数据迁移是常见的问题:比如一开始使用Oracle,后来想使用mysql,而且需要把Oracle数据库的数据迁移到mysql里面;后期有想使用pg数据库,同时需要把Mysql数据库的数据迁移到pgl里面,等等…...

消息中间件都有哪些
RabbitMQ:这可是一个开源的消息代理软件,也叫消息中间件。它支持多种消息传递协议,可以轻松地在分布式系统中进行可靠的消息传递。 Kafka:Apache Kafka是一个分布式流处理平台,它主要用于处理实时数据流。Kafka的设计初…...
数据结构(3)内核链表
一、内核链表 内核链表是一种在操作系统内核中使用的数据结构,主要用于管理和组织内核对象。它是有头双向链表的一种实现。 内核链表的特点 双向链表: 内核链表的每个节点都包含指向前一个节点和后一个节点的指针,这使得在链表中进行插入和删除操作时更…...

Linux 硬件学习 s3c2440 arm920t蜂鸣器
1.查找手册时钟图,输入12m想要通过pll得到400m的信号 2.对比pll值,找到最近的为405,得到pll中mdiv为127,pdiv为2,sdiv为1 3.想要得到fclk400,hclk100,pclk50,对比分频比例࿰…...
提交保存,要做重复请求拦截,避免出现重复保存的问题
**问题:**前端ajax提交数据的时候,当频繁点击的时候,或者两个账号以相同数据创建的时候,会出现问题。 **处理办法:**前端拦截,防止重复提交数据,在上一次请求返回结果之后才允许提交第二次&…...
华为 HCIP-Datacom H12-821 题库 (3)
有需要题库的可以看主页置顶 1.运行 OSPF 协议的路由器在交互 DD 报文时,会使用以下哪一个参数选举主从关系? A、接口的 IP 地址 B、接口的 DR 优先级 C、Area ID D、Router ID 答案:D 解析: Router-ID 大的为主&a…...
spring-boot 事件
事件触发时机常用监听器描述ApplicationStartingEvent应用启动时LoggingApplicationListener:决定加载哪个日志系统ApplicationEnvironmentPreparedEvent创建Environment之后BootstrapApplicationListener:加载spring-cloud bootstrap配置文件࿱…...

合碳智能 × Milvus:探索化学合成新境界——逆合成路线设计
合碳智能(C12.ai)成立于2022年,致力于运用AI和具身智能技术,为药物研发实验室提供新一代智能化解决方案,推动实验室从自动化迈向智能化,突破传统实验模式与人员的依赖,解决效率和成本的瓶颈&…...

二分查找 | 二分模板 | 二分题目解析
1.二分查找 二分查找的一个前提就是要保证数组是有序的(不准确)!利用二段性! 1.朴素二分模板 朴素二分法的查找中间的值和目标值比较 while(left < right) // 注意是要: < {int mid left (right -left) / 2;…...

uni-app应用更新(Android端)
关于app更新,uni-app官方推荐的是 uni-upgrade-center,看了下比较繁琐,因此这里自己实现检查更新并下载安装的逻辑。 1.界面效果 界面中的弹框和 进度条采用了uView 提供的组件 2.检查更新并下载安装 一、版本信息配置在服务端,…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

GO协程(Goroutine)问题总结
在使用Go语言来编写代码时,遇到的一些问题总结一下 [参考文档]:https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现: 今天在看到这个教程的时候,在自己的电…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...

生信服务器 | 做生信为什么推荐使用Linux服务器?
原文链接:生信服务器 | 做生信为什么推荐使用Linux服务器? 一、 做生信为什么推荐使用服务器? 大家好,我是小杜。在做生信分析的同学,或是将接触学习生信分析的同学,<font style"color:rgb(53, 1…...

【Vue】scoped+组件通信+props校验
【scoped作用及原理】 【作用】 默认写在组件中style的样式会全局生效, 因此很容易造成多个组件之间的样式冲突问题 故而可以给组件加上scoped 属性, 令样式只作用于当前组件的标签 作用:防止不同vue组件样式污染 【原理】 给组件加上scoped 属性后…...

GC1808:高性能音频ADC的卓越之选
在音频处理领域,高质量的音频模数转换器(ADC)是实现精准音频数字化的关键。GC1808,一款96kHz、24bit立体声音频ADC,以其卓越的性能和高性价比脱颖而出,成为众多音频设备制造商的理想选择。 GC1808集成了64倍…...

SFTrack:面向警务无人机的自适应多目标跟踪算法——突破小尺度高速运动目标的追踪瓶颈
【导读】 本文针对无人机(UAV)视频中目标尺寸小、运动快导致的多目标跟踪难题,提出一种更简单高效的方法。核心创新在于从低置信度检测启动跟踪(贴合无人机场景特性),并改进传统外观匹配算法以关联此类检测…...