当前位置: 首页 > news >正文

opencv之阈值处理

文章目录

  • 1. 阈值处理
  • 2. 阈值处理的基本原理
  • 3. 常见的阈值处理方法
    • 3.1 全局阈值(Global Thresholding):
    • 3.2 自适应阈值(Adaptive Thresholding):
      • 3.2.1 工作原理
      • 3.2.2 工作步骤
      • 3.2.3 适用场景
      • 3.2.4 优缺点
        • 自适应阈值的优点
        • 自适应阈值的缺点
    • 3.3 Otsu’s 方法:
      • 什么是最大化类间方差
      • 工作原理
      • 适用场景
      • 优缺点
  • 4. 应用场景
  • 总结

1. 阈值处理

在图像处理领域,阈值处理(Thresholding)是一种简单而有效的技术,用于将灰度图像转化为二值图像(即每个像素点要么是黑色,要么是白色)。这种处理方式常用于分割图像中的前景和背景,或者提取特定的形状或物体。

2. 阈值处理的基本原理

阈值处理的基本思想是设定一个阈值 T T T,然后遍历图像中的每一个像素。如果像素的灰度值高于阈值,就将其设为白色(通常为255);如果低于阈值,则将其设为黑色(通常为0)。公式如下:

g ( x , y ) = { 255 , i f f ( x , y ) > T 0 , i f f ( x , y ) ≤ T (1) g(x,y)= \begin{cases} 255,if\quad f(x,y)>T\\ 0, if\quad f(x,y)\leq T \end{cases} \tag{1} g(x,y)={255,iff(x,y)>T0,iff(x,y)T(1)
其中, f ( x , y ) f(x,y) f(x,y) 是原始图像的灰度值, g ( x , y ) g(x,y) g(x,y) 是处理后的二值图像。

3. 常见的阈值处理方法

3.1 全局阈值(Global Thresholding):

  • 在这种方法中,整个图像使用同一个阈值。适合于图像对比度较高且背景简单的情况。OpenCV 中常用的函数是 cv2.threshold
import cv2# 读取灰度图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)# 全局阈值处理
_, thresh_global = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)# 显示结果
cv2.imshow('Global Thresholding', thresh_global)
cv2.waitKey(0)
cv2.destroyAllWindows()

3.2 自适应阈值(Adaptive Thresholding):

自适应阈值方法会根据图像的局部区域动态计算阈值,因此对于光照不均或对比度较低的图像更有效。自适应阈值根据局部窗口内的像素值计算每个像素的阈值,从而避免了全局阈值对整个图像的统一处理。

3.2.1 工作原理

自适应阈值(Adaptive Thresholding)的工作原理是根据图像局部区域的特征来动态调整阈值,从而处理光照不均或对比度不够的图像。它的主要思想是对于图像中的每一个像素,根据其周围邻域的像素值来确定一个局部阈值。这样可以避免全局阈值方法可能带来的效果不佳的问题,尤其是在图像的不同区域光照差异较大的情况下。

  • 计算临近区域的加权平均值:

对于图像中的每一个像素点,自适应阈值方法会考虑该像素点周围的一定范围内的像素值。这些像素值形成了一个局部区域或窗口。
通过计算这个局部区域内的像素值的加权平均(或均值),得到一个阈值。加权平均意味着某些像素对计算结果的影响比其他像素更大,通常是窗口中心的像素权重更高。

  • 获得阈值:

计算出的加权平均值(或均值)被用作该像素点的局部阈值。这个阈值代表了该像素所在局部区域的“亮度”水平。

  • 对当前像素点进行处理:

使用计算得到的局部阈值来决定该像素点的类别。具体地说:
如果当前像素的值大于或等于局部阈值,则将其分类为前景(通常设为 255,白色)。
如果当前像素的值小于局部阈值,则将其分类为背景(通常设为 0,黑色)。

3.2.2 工作步骤

1. 局部邻域计算:

  • 将图像划分为多个小的局部区域(通常称为窗口或块),在每个局部区域内计算一个局部阈值。这个局部阈值基于该区域内的像素值来动态确定。

2. 局部阈值计算:

对于每个局部区域,计算其局部阈值的常用方法包括均值和高斯加权平均:

  • 均值自适应阈值(Adaptive Mean Thresholding): 阈值等于邻域像素的平均值减去一个常量。公式如下:

    • 公式: T ( x , y ) = m e a n ( I ( x , y ) ) − C T(x,y)=mean(I(x,y))−C T(x,y)=mean(I(x,y))C

    • 其中:

      • T ( x , y ) T(x,y) T(x,y)是位置 ( x , y ) (x,y) (x,y) 的阈值。
      • m e a n ( I ( x , y ) ) mean(I(x,y)) mean(I(x,y)) 是位置 ( x , y ) (x,y) (x,y) 的邻域内像素的平均值。
      • C C C 是一个常数,用于调整阈值。

​ 在这种方法中,阈值是由邻域内像素的均值减去一个常数 C C C计算得到的。常数 C C C用于避免噪声对分割结果的影响。

  • 高斯自适应阈值(Adaptive Gaussian Thresholding): 阈值等于邻域像素的加权平均值(权重为高斯窗口)减去一个常量。公式如下:

    • T ( x , y ) = m e a n ( I ( x , y ) ) − C ⋅ s t d ( I ( x , y ) ) T(x,y)=mean(I(x,y))−C⋅std(I(x,y)) T(x,y)=mean(I(x,y))Cstd(I(x,y))
    • 其中:
      • T ( x , y ) T(x,y) T(x,y) 是位置 ( x , y ) (x,y) (x,y) 的阈值。
      • m e a n ( I ( x , y ) ) mean(I(x,y)) mean(I(x,y)) 是位置 ( x , y ) (x,y) (x,y)的邻域内像素的平均值。
      • s t d ( I ( x , y ) ) std(I(x,y)) std(I(x,y)) 是位置 ( x , y ) (x,y) (x,y)的邻域内像素的标准差。
      • C C C是一个常数,用于调整阈值。

    在这种方法中,阈值是由邻域内像素的均值减去标准差的 C C C倍计算得到的。这样可以更好地处理局部的光照变化和噪声。

3.二值化处理:

  • 对于每个像素点,将其灰度值与计算得到的局部阈值进行比较。如果灰度值大于局部阈值,则将其设置为白色;否则,设置为黑色。

3.2.3 适用场景

  • 图像光照不均匀或有明显的阴影。
  • 需要在复杂背景下进行分割。

3.2.4 优缺点

自适应阈值的优点
  • 适应光照变化: 能够处理光照不均匀的图像,避免全局阈值方法对不同区域处理不一致的问题。
  • 局部处理: 通过局部窗口计算阈值,可以更好地处理细节和复杂背景。
自适应阈值的缺点
  • 计算复杂度较高: 由于需要对每个像素计算局部阈值,处理时间相对较长。
  • 参数选择: 自适应阈值方法中的参数(如窗口大小和常量)需要根据具体图像调整,以获得最佳效果。
import cv2# 读取灰度图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)# 自适应均值阈值处理
thresh_mean = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY, 11, 2)# 自适应高斯阈值处理
thresh_gaussian = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY, 11, 2)# 显示结果
cv2.imshow('Adaptive Mean Thresholding', thresh_mean)
cv2.imshow('Adaptive Gaussian Thresholding', thresh_gaussian)
cv2.waitKey(0)
cv2.destroyAllWindows()

自定义实现(不使用 OpenCV)

如果你需要从头开始实现自适应阈值处理,以下是一个简化的 Python 代码示例:

import numpy as np
import cv2def adaptive_threshold(image, block_size, C):rows, cols = image.shapepadded_image = np.pad(image, pad_width=block_size//2, mode='constant', constant_values=0)result = np.zeros_like(image)for i in range(rows):for j in range(cols):block = padded_image[i:i+block_size, j:j+block_size]mean = np.mean(block)threshold = mean - Cresult[i, j] = 255 if image[i, j] >= threshold else 0return result# 读取图像(以灰度模式)
image = cv2.imread('input_image.png', cv2.IMREAD_GRAYSCALE)# 设置自适应阈值参数
block_size = 11
constant = 2# 计算自适应阈值
adaptive_thresh = adaptive_threshold(image, block_size, constant)# 显示结果
cv2.imshow('Original Image', image)
cv2.imshow('Adaptive Threshold', adaptive_thresh)# 等待按键并销毁窗口
cv2.waitKey(0)
cv2.destroyAllWindows()# 保存处理后的图像(可选)
cv2.imwrite('adaptive_thresh_custom.png', adaptive_thresh)

3.3 Otsu’s 方法:

Otsu’s 阈值法是一种自动选择阈值的全局方法。它通过分析图像的灰度直方图,找到能够最大化类间方差(前景和背景)的阈值。Otsu’s 方法适用于双峰分布的图像(即前景和背景的灰度值分布相对独立且存在两个峰值)。

什么是最大化类间方差

最大化类间方差(Between-Class Variance)是 Otsu’s 阈值法的核心概念,旨在选择一个最佳阈值,使得图像的前景和背景之间的差异最大化。这种方法通过分析图像的灰度直方图,找到一个阈值,使得图像被分割成前景和背景后,它们之间的类间方差最大。

工作原理

Otsu’s 方法遍历所有可能的阈值,并计算每个阈值对应的类间方差,选择使类间方差最大的阈值作为最终的阈值。

适用场景

  • 图像的灰度直方图呈现双峰分布。
  • 需要自动选择最优阈值。

优缺点

  • 优点: 自动选择阈值,适用于双峰图像的分割。
  • 缺点: 对多峰分布的图像效果不佳,计算量相对较大。

公式推导链接:https://blog.csdn.net/leonardohaig/article/details/120269341

OpenCV 中可以通过设置 cv2.THRESH_OTSU 来使用。

import cv2# 读取灰度图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)# Otsu's 阈值处理
_, thresh_otsu = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)# 显示结果
cv2.imshow('Otsu Thresholding', thresh_otsu)
cv2.waitKey(0)
cv2.destroyAllWindows()

代码

import cv2
import numpy as np# 读取图像并转换为灰度图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)# 全局阈值处理
_, thresh_global = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)# 自适应阈值处理
thresh_adaptive = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY, 11, 2)# Otsu's 阈值处理
_, thresh_otsu = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)# 显示结果
cv2.imshow('Global Thresholding', thresh_global)
cv2.imshow('Adaptive Thresholding', thresh_adaptive)
cv2.imshow('Otsu Thresholding', thresh_otsu)
cv2.waitKey(0)
cv2.destroyAllWindows()

4. 应用场景

  • 文档图像的二值化:用于将扫描的文档图像转换为黑白图像,以便进一步的 OCR(光学字符识别)处理。
  • 物体检测:在自动化检测系统中,阈值处理可以用于分割目标物体,以便进行形状分析或特征提取。
  • 医学图像处理:用于分割细胞、器官或其他生物结构。

阈值处理是图像预处理中常用的步骤,尤其适合对噪声较少、对比度较高的图像进行处理。根据具体应用的需要,可以选择合适的阈值处理方法。

总结

  • 全局阈值适合简单、光照均匀的图像,计算速度快但对复杂场景效果不好。
  • 自适应阈值适合光照不均的复杂图像,能更好地处理细节,但计算复杂度较高。
  • Otsu’s 阈值法是一种自动选择阈值的全局方法,适合灰度直方图呈双峰分布的图像。

相关文章:

opencv之阈值处理

文章目录 1. 阈值处理2. 阈值处理的基本原理3. 常见的阈值处理方法3.1 全局阈值(Global Thresholding):3.2 自适应阈值(Adaptive Thresholding):3.2.1 工作原理3.2.2 工作步骤3.2.3 适用场景3.2.4 优缺点自适应阈值的优点自适应阈…...

oracle startup失败,ORA-01078: failure in processing system parameters

SQL> startup ORA-01078: failure in processing system parameters LRM-00109: could not open parameter file /data/oracle/product/11.2.0/db_1/dbs/initorc1.ora 出错的原因可能是:文件名字不正确,文件权限不对,文件不存在&#x…...

【python因果推断库7】使用 pymc 模型的工具变量建模 (IV)2

目录 与普通最小二乘法 (OLS) 的比较 应用理论:政治制度与GDP 拟合模型:贝叶斯方法 多变量结果和相关性度量 结论 与普通最小二乘法 (OLS) 的比较 simple_ols_reg sk_lin_reg().fit(X.reshape(-1, 1), y)print("Intercept:", simple_ols_…...

【2024数模国赛赛题思路公开】国赛B题思路丨附可运行代码丨无偿自提

2024年国赛B题解题思路 问题 1: 抽样检测方案设计 【题目分析】 分析: 目标是设计一个高效的抽样检测方案,在尽量少的样本数量下,确保在高信度水平下做出正确的接受或拒收决策。需要处理两个不同的信度要求,这对样本量的计算提…...

智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序(KNN分类器)

智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序(KNN分类器) 文章目录 一、基本原理原理流程举个例子总结 二、实验结果三、核心代码四、代码获取五、总结 智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序&#x…...

使用udp进行通信

UDP chat 头文件 #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <arpa/inet.h> #include <time…...

C#上位机使用Microsoft.Office.Interop.Excel和EPPlus库对Excel或WPS表格进行写操作

C#上位机使用Microsoft.Office.Interop.Excel和EPPlus库对Excel或WPS表格进行写操作 一、使用Microsoft.Office.Interop.Excel库 1、通过NuGet包管理器添加引用 按照下图中红框所示进行操作。 需要安装Microsoft.Office.Interop.Excel包 添加Microsoft Office 16.0 Object …...

java重点学习-redis

一.redis 穿透无中生有key&#xff0c;布隆过滤nul隔离 锁与非期解难题。缓存击穿过期key&#xff0c; 雪崩大量过期key&#xff0c;过期时间要随机。 面试必考三兄弟&#xff0c;可用限流来保底。 1.1 Redis的使用场景 根据自己简历上的业务进行回答 缓存穿透、击穿、雪崩、双…...

每日刷题(图论)

P1119 灾后重建 P1119 灾后重建 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 思路 看数据范围知道需要用到Floyd算法&#xff0c;但是道路是不能直接用的&#xff0c;需要等到连接道路的两个村庄重建好才可以使用&#xff0c;所以这需要按照时间依次加入中转点&#xff0c…...

Requestium - 将Requests和Selenium合并在一起的自动化测试工具

Requests 是 Python 的第三方库&#xff0c;主要用于发送 http 请求&#xff0c;常用于接口自动化测试等。 Selenium 是一个用于 Web 应用程序的自动化测试工具。Selenium 测试直接运行在浏览器中&#xff0c;就像真正的用户在操作一样。 本篇介绍一款将 Requests 和 Seleniu…...

mysql和pg等数据库之间的数据迁移实战分享

mysql和pg等数据库之间的数据迁移是常见的问题&#xff1a;比如一开始使用Oracle&#xff0c;后来想使用mysql&#xff0c;而且需要把Oracle数据库的数据迁移到mysql里面&#xff1b;后期有想使用pg数据库&#xff0c;同时需要把Mysql数据库的数据迁移到pgl里面&#xff0c;等等…...

消息中间件都有哪些

RabbitMQ&#xff1a;这可是一个开源的消息代理软件&#xff0c;也叫消息中间件。它支持多种消息传递协议&#xff0c;可以轻松地在分布式系统中进行可靠的消息传递。 Kafka&#xff1a;Apache Kafka是一个分布式流处理平台&#xff0c;它主要用于处理实时数据流。Kafka的设计初…...

数据结构(3)内核链表

一、内核链表 内核链表是一种在操作系统内核中使用的数据结构&#xff0c;主要用于管理和组织内核对象。它是有头双向链表的一种实现。 内核链表的特点 双向链表: 内核链表的每个节点都包含指向前一个节点和后一个节点的指针&#xff0c;这使得在链表中进行插入和删除操作时更…...

Linux 硬件学习 s3c2440 arm920t蜂鸣器

1.查找手册时钟图&#xff0c;输入12m想要通过pll得到400m的信号 2.对比pll值&#xff0c;找到最近的为405&#xff0c;得到pll中mdiv为127&#xff0c;pdiv为2&#xff0c;sdiv为1 3.想要得到fclk400&#xff0c;hclk100&#xff0c;pclk50&#xff0c;对比分频比例&#xff0…...

提交保存,要做重复请求拦截,避免出现重复保存的问题

**问题&#xff1a;**前端ajax提交数据的时候&#xff0c;当频繁点击的时候&#xff0c;或者两个账号以相同数据创建的时候&#xff0c;会出现问题。 **处理办法&#xff1a;**前端拦截&#xff0c;防止重复提交数据&#xff0c;在上一次请求返回结果之后才允许提交第二次&…...

华为 HCIP-Datacom H12-821 题库 (3)

有需要题库的可以看主页置顶​​​​​​​ 1.运行 OSPF 协议的路由器在交互 DD 报文时&#xff0c;会使用以下哪一个参数选举主从关系&#xff1f; A、接口的 IP 地址 B、接口的 DR 优先级 C、Area ID D、Router ID 答案&#xff1a;D 解析&#xff1a; Router-ID 大的为主&a…...

spring-boot 事件

事件触发时机常用监听器描述ApplicationStartingEvent应用启动时LoggingApplicationListener&#xff1a;决定加载哪个日志系统ApplicationEnvironmentPreparedEvent创建Environment之后BootstrapApplicationListener&#xff1a;加载spring-cloud bootstrap配置文件&#xff1…...

合碳智能 × Milvus:探索化学合成新境界——逆合成路线设计

合碳智能&#xff08;C12.ai&#xff09;成立于2022年&#xff0c;致力于运用AI和具身智能技术&#xff0c;为药物研发实验室提供新一代智能化解决方案&#xff0c;推动实验室从自动化迈向智能化&#xff0c;突破传统实验模式与人员的依赖&#xff0c;解决效率和成本的瓶颈&…...

二分查找 | 二分模板 | 二分题目解析

1.二分查找 二分查找的一个前提就是要保证数组是有序的&#xff08;不准确&#xff09;&#xff01;利用二段性&#xff01; 1.朴素二分模板 朴素二分法的查找中间的值和目标值比较 while(left < right) // 注意是要&#xff1a; < {int mid left (right -left) / 2;…...

uni-app应用更新(Android端)

关于app更新&#xff0c;uni-app官方推荐的是 uni-upgrade-center&#xff0c;看了下比较繁琐&#xff0c;因此这里自己实现检查更新并下载安装的逻辑。 1.界面效果 界面中的弹框和 进度条采用了uView 提供的组件 2.检查更新并下载安装 一、版本信息配置在服务端&#xff0c…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

在 Spring Boot 中使用 JSP

jsp&#xff1f; 好多年没用了。重新整一下 还费了点时间&#xff0c;记录一下。 项目结构&#xff1a; pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...

第八部分:阶段项目 6:构建 React 前端应用

现在&#xff0c;是时候将你学到的 React 基础知识付诸实践&#xff0c;构建一个简单的前端应用来模拟与后端 API 的交互了。在这个阶段&#xff0c;你可以先使用模拟数据&#xff0c;或者如果你的后端 API&#xff08;阶段项目 5&#xff09;已经搭建好&#xff0c;可以直接连…...

Vue3 PC端 UI组件库我更推荐Naive UI

一、Vue3生态现状与UI库选择的重要性 随着Vue3的稳定发布和Composition API的广泛采用&#xff0c;前端开发者面临着UI组件库的重新选择。一个好的UI库不仅能提升开发效率&#xff0c;还能确保项目的长期可维护性。本文将对比三大主流Vue3 UI库&#xff08;Naive UI、Element …...

Python 解释器安装全攻略(适用于 Linux / Windows / macOS)

目录 一、Windows安装Python解释器1.1 下载并安装Python解释1.2 测试安装是否成功1.3 设置pip的国内镜像------永久配置 二、macOS安装Python解释器三、Linux下安装Python解释器3.1 Rocky8.10/Rocky9.5安装Python解释器3.2 Ubuntu2204/Ubuntu2404安装Python解释器3.3 设置pip的…...