opencv之阈值处理
文章目录
- 1. 阈值处理
- 2. 阈值处理的基本原理
- 3. 常见的阈值处理方法
- 3.1 全局阈值(Global Thresholding):
- 3.2 自适应阈值(Adaptive Thresholding):
- 3.2.1 工作原理
- 3.2.2 工作步骤
- 3.2.3 适用场景
- 3.2.4 优缺点
- 自适应阈值的优点
- 自适应阈值的缺点
- 3.3 Otsu’s 方法:
- 什么是最大化类间方差
- 工作原理
- 适用场景
- 优缺点
- 4. 应用场景
- 总结
1. 阈值处理
在图像处理领域,阈值处理(Thresholding)是一种简单而有效的技术,用于将灰度图像转化为二值图像(即每个像素点要么是黑色,要么是白色)。这种处理方式常用于分割图像中的前景和背景,或者提取特定的形状或物体。
2. 阈值处理的基本原理
阈值处理的基本思想是设定一个阈值 T T T,然后遍历图像中的每一个像素。如果像素的灰度值高于阈值,就将其设为白色(通常为255);如果低于阈值,则将其设为黑色(通常为0)。公式如下:
g ( x , y ) = { 255 , i f f ( x , y ) > T 0 , i f f ( x , y ) ≤ T (1) g(x,y)= \begin{cases} 255,if\quad f(x,y)>T\\ 0, if\quad f(x,y)\leq T \end{cases} \tag{1} g(x,y)={255,iff(x,y)>T0,iff(x,y)≤T(1)
其中, f ( x , y ) f(x,y) f(x,y) 是原始图像的灰度值, g ( x , y ) g(x,y) g(x,y) 是处理后的二值图像。
3. 常见的阈值处理方法
3.1 全局阈值(Global Thresholding):
- 在这种方法中,整个图像使用同一个阈值。适合于图像对比度较高且背景简单的情况。OpenCV 中常用的函数是
cv2.threshold。
import cv2# 读取灰度图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)# 全局阈值处理
_, thresh_global = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)# 显示结果
cv2.imshow('Global Thresholding', thresh_global)
cv2.waitKey(0)
cv2.destroyAllWindows()
3.2 自适应阈值(Adaptive Thresholding):
自适应阈值方法会根据图像的局部区域动态计算阈值,因此对于光照不均或对比度较低的图像更有效。自适应阈值根据局部窗口内的像素值计算每个像素的阈值,从而避免了全局阈值对整个图像的统一处理。
3.2.1 工作原理
自适应阈值(Adaptive Thresholding)的工作原理是根据图像局部区域的特征来动态调整阈值,从而处理光照不均或对比度不够的图像。它的主要思想是对于图像中的每一个像素,根据其周围邻域的像素值来确定一个局部阈值。这样可以避免全局阈值方法可能带来的效果不佳的问题,尤其是在图像的不同区域光照差异较大的情况下。
- 计算临近区域的加权平均值:
对于图像中的每一个像素点,自适应阈值方法会考虑该像素点周围的一定范围内的像素值。这些像素值形成了一个局部区域或窗口。
通过计算这个局部区域内的像素值的加权平均(或均值),得到一个阈值。加权平均意味着某些像素对计算结果的影响比其他像素更大,通常是窗口中心的像素权重更高。
- 获得阈值:
计算出的加权平均值(或均值)被用作该像素点的局部阈值。这个阈值代表了该像素所在局部区域的“亮度”水平。
- 对当前像素点进行处理:
使用计算得到的局部阈值来决定该像素点的类别。具体地说:
如果当前像素的值大于或等于局部阈值,则将其分类为前景(通常设为 255,白色)。
如果当前像素的值小于局部阈值,则将其分类为背景(通常设为 0,黑色)。
3.2.2 工作步骤
1. 局部邻域计算:
- 将图像划分为多个小的局部区域(通常称为窗口或块),在每个局部区域内计算一个局部阈值。这个局部阈值基于该区域内的像素值来动态确定。
2. 局部阈值计算:
对于每个局部区域,计算其局部阈值的常用方法包括均值和高斯加权平均:
-
均值自适应阈值(Adaptive Mean Thresholding): 阈值等于邻域像素的平均值减去一个常量。公式如下:
-
公式: T ( x , y ) = m e a n ( I ( x , y ) ) − C T(x,y)=mean(I(x,y))−C T(x,y)=mean(I(x,y))−C
-
其中:
- T ( x , y ) T(x,y) T(x,y)是位置 ( x , y ) (x,y) (x,y) 的阈值。
- m e a n ( I ( x , y ) ) mean(I(x,y)) mean(I(x,y)) 是位置 ( x , y ) (x,y) (x,y) 的邻域内像素的平均值。
- C C C 是一个常数,用于调整阈值。
-
在这种方法中,阈值是由邻域内像素的均值减去一个常数 C C C计算得到的。常数 C C C用于避免噪声对分割结果的影响。
-
高斯自适应阈值(Adaptive Gaussian Thresholding): 阈值等于邻域像素的加权平均值(权重为高斯窗口)减去一个常量。公式如下:
- T ( x , y ) = m e a n ( I ( x , y ) ) − C ⋅ s t d ( I ( x , y ) ) T(x,y)=mean(I(x,y))−C⋅std(I(x,y)) T(x,y)=mean(I(x,y))−C⋅std(I(x,y))
- 其中:
- T ( x , y ) T(x,y) T(x,y) 是位置 ( x , y ) (x,y) (x,y) 的阈值。
- m e a n ( I ( x , y ) ) mean(I(x,y)) mean(I(x,y)) 是位置 ( x , y ) (x,y) (x,y)的邻域内像素的平均值。
- s t d ( I ( x , y ) ) std(I(x,y)) std(I(x,y)) 是位置 ( x , y ) (x,y) (x,y)的邻域内像素的标准差。
- C C C是一个常数,用于调整阈值。
在这种方法中,阈值是由邻域内像素的均值减去标准差的 C C C倍计算得到的。这样可以更好地处理局部的光照变化和噪声。
3.二值化处理:
- 对于每个像素点,将其灰度值与计算得到的局部阈值进行比较。如果灰度值大于局部阈值,则将其设置为白色;否则,设置为黑色。
3.2.3 适用场景
- 图像光照不均匀或有明显的阴影。
- 需要在复杂背景下进行分割。
3.2.4 优缺点
自适应阈值的优点
- 适应光照变化: 能够处理光照不均匀的图像,避免全局阈值方法对不同区域处理不一致的问题。
- 局部处理: 通过局部窗口计算阈值,可以更好地处理细节和复杂背景。
自适应阈值的缺点
- 计算复杂度较高: 由于需要对每个像素计算局部阈值,处理时间相对较长。
- 参数选择: 自适应阈值方法中的参数(如窗口大小和常量)需要根据具体图像调整,以获得最佳效果。
import cv2# 读取灰度图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)# 自适应均值阈值处理
thresh_mean = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY, 11, 2)# 自适应高斯阈值处理
thresh_gaussian = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY, 11, 2)# 显示结果
cv2.imshow('Adaptive Mean Thresholding', thresh_mean)
cv2.imshow('Adaptive Gaussian Thresholding', thresh_gaussian)
cv2.waitKey(0)
cv2.destroyAllWindows()
自定义实现(不使用 OpenCV)
如果你需要从头开始实现自适应阈值处理,以下是一个简化的 Python 代码示例:
import numpy as np
import cv2def adaptive_threshold(image, block_size, C):rows, cols = image.shapepadded_image = np.pad(image, pad_width=block_size//2, mode='constant', constant_values=0)result = np.zeros_like(image)for i in range(rows):for j in range(cols):block = padded_image[i:i+block_size, j:j+block_size]mean = np.mean(block)threshold = mean - Cresult[i, j] = 255 if image[i, j] >= threshold else 0return result# 读取图像(以灰度模式)
image = cv2.imread('input_image.png', cv2.IMREAD_GRAYSCALE)# 设置自适应阈值参数
block_size = 11
constant = 2# 计算自适应阈值
adaptive_thresh = adaptive_threshold(image, block_size, constant)# 显示结果
cv2.imshow('Original Image', image)
cv2.imshow('Adaptive Threshold', adaptive_thresh)# 等待按键并销毁窗口
cv2.waitKey(0)
cv2.destroyAllWindows()# 保存处理后的图像(可选)
cv2.imwrite('adaptive_thresh_custom.png', adaptive_thresh)
3.3 Otsu’s 方法:
Otsu’s 阈值法是一种自动选择阈值的全局方法。它通过分析图像的灰度直方图,找到能够最大化类间方差(前景和背景)的阈值。Otsu’s 方法适用于双峰分布的图像(即前景和背景的灰度值分布相对独立且存在两个峰值)。
什么是最大化类间方差
最大化类间方差(Between-Class Variance)是 Otsu’s 阈值法的核心概念,旨在选择一个最佳阈值,使得图像的前景和背景之间的差异最大化。这种方法通过分析图像的灰度直方图,找到一个阈值,使得图像被分割成前景和背景后,它们之间的类间方差最大。
工作原理
Otsu’s 方法遍历所有可能的阈值,并计算每个阈值对应的类间方差,选择使类间方差最大的阈值作为最终的阈值。
适用场景
- 图像的灰度直方图呈现双峰分布。
- 需要自动选择最优阈值。
优缺点
- 优点: 自动选择阈值,适用于双峰图像的分割。
- 缺点: 对多峰分布的图像效果不佳,计算量相对较大。
公式推导链接:https://blog.csdn.net/leonardohaig/article/details/120269341
OpenCV 中可以通过设置 cv2.THRESH_OTSU 来使用。
import cv2# 读取灰度图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)# Otsu's 阈值处理
_, thresh_otsu = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)# 显示结果
cv2.imshow('Otsu Thresholding', thresh_otsu)
cv2.waitKey(0)
cv2.destroyAllWindows()
代码
import cv2
import numpy as np# 读取图像并转换为灰度图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)# 全局阈值处理
_, thresh_global = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)# 自适应阈值处理
thresh_adaptive = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY, 11, 2)# Otsu's 阈值处理
_, thresh_otsu = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)# 显示结果
cv2.imshow('Global Thresholding', thresh_global)
cv2.imshow('Adaptive Thresholding', thresh_adaptive)
cv2.imshow('Otsu Thresholding', thresh_otsu)
cv2.waitKey(0)
cv2.destroyAllWindows()
4. 应用场景
- 文档图像的二值化:用于将扫描的文档图像转换为黑白图像,以便进一步的 OCR(光学字符识别)处理。
- 物体检测:在自动化检测系统中,阈值处理可以用于分割目标物体,以便进行形状分析或特征提取。
- 医学图像处理:用于分割细胞、器官或其他生物结构。
阈值处理是图像预处理中常用的步骤,尤其适合对噪声较少、对比度较高的图像进行处理。根据具体应用的需要,可以选择合适的阈值处理方法。
总结
- 全局阈值适合简单、光照均匀的图像,计算速度快但对复杂场景效果不好。
- 自适应阈值适合光照不均的复杂图像,能更好地处理细节,但计算复杂度较高。
- Otsu’s 阈值法是一种自动选择阈值的全局方法,适合灰度直方图呈双峰分布的图像。
相关文章:
opencv之阈值处理
文章目录 1. 阈值处理2. 阈值处理的基本原理3. 常见的阈值处理方法3.1 全局阈值(Global Thresholding):3.2 自适应阈值(Adaptive Thresholding):3.2.1 工作原理3.2.2 工作步骤3.2.3 适用场景3.2.4 优缺点自适应阈值的优点自适应阈…...
oracle startup失败,ORA-01078: failure in processing system parameters
SQL> startup ORA-01078: failure in processing system parameters LRM-00109: could not open parameter file /data/oracle/product/11.2.0/db_1/dbs/initorc1.ora 出错的原因可能是:文件名字不正确,文件权限不对,文件不存在&#x…...
【python因果推断库7】使用 pymc 模型的工具变量建模 (IV)2
目录 与普通最小二乘法 (OLS) 的比较 应用理论:政治制度与GDP 拟合模型:贝叶斯方法 多变量结果和相关性度量 结论 与普通最小二乘法 (OLS) 的比较 simple_ols_reg sk_lin_reg().fit(X.reshape(-1, 1), y)print("Intercept:", simple_ols_…...
【2024数模国赛赛题思路公开】国赛B题思路丨附可运行代码丨无偿自提
2024年国赛B题解题思路 问题 1: 抽样检测方案设计 【题目分析】 分析: 目标是设计一个高效的抽样检测方案,在尽量少的样本数量下,确保在高信度水平下做出正确的接受或拒收决策。需要处理两个不同的信度要求,这对样本量的计算提…...
智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序(KNN分类器)
智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序(KNN分类器) 文章目录 一、基本原理原理流程举个例子总结 二、实验结果三、核心代码四、代码获取五、总结 智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序&#x…...
使用udp进行通信
UDP chat 头文件 #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <arpa/inet.h> #include <time…...
C#上位机使用Microsoft.Office.Interop.Excel和EPPlus库对Excel或WPS表格进行写操作
C#上位机使用Microsoft.Office.Interop.Excel和EPPlus库对Excel或WPS表格进行写操作 一、使用Microsoft.Office.Interop.Excel库 1、通过NuGet包管理器添加引用 按照下图中红框所示进行操作。 需要安装Microsoft.Office.Interop.Excel包 添加Microsoft Office 16.0 Object …...
java重点学习-redis
一.redis 穿透无中生有key,布隆过滤nul隔离 锁与非期解难题。缓存击穿过期key, 雪崩大量过期key,过期时间要随机。 面试必考三兄弟,可用限流来保底。 1.1 Redis的使用场景 根据自己简历上的业务进行回答 缓存穿透、击穿、雪崩、双…...
每日刷题(图论)
P1119 灾后重建 P1119 灾后重建 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 思路 看数据范围知道需要用到Floyd算法,但是道路是不能直接用的,需要等到连接道路的两个村庄重建好才可以使用,所以这需要按照时间依次加入中转点,…...
Requestium - 将Requests和Selenium合并在一起的自动化测试工具
Requests 是 Python 的第三方库,主要用于发送 http 请求,常用于接口自动化测试等。 Selenium 是一个用于 Web 应用程序的自动化测试工具。Selenium 测试直接运行在浏览器中,就像真正的用户在操作一样。 本篇介绍一款将 Requests 和 Seleniu…...
mysql和pg等数据库之间的数据迁移实战分享
mysql和pg等数据库之间的数据迁移是常见的问题:比如一开始使用Oracle,后来想使用mysql,而且需要把Oracle数据库的数据迁移到mysql里面;后期有想使用pg数据库,同时需要把Mysql数据库的数据迁移到pgl里面,等等…...
消息中间件都有哪些
RabbitMQ:这可是一个开源的消息代理软件,也叫消息中间件。它支持多种消息传递协议,可以轻松地在分布式系统中进行可靠的消息传递。 Kafka:Apache Kafka是一个分布式流处理平台,它主要用于处理实时数据流。Kafka的设计初…...
数据结构(3)内核链表
一、内核链表 内核链表是一种在操作系统内核中使用的数据结构,主要用于管理和组织内核对象。它是有头双向链表的一种实现。 内核链表的特点 双向链表: 内核链表的每个节点都包含指向前一个节点和后一个节点的指针,这使得在链表中进行插入和删除操作时更…...
Linux 硬件学习 s3c2440 arm920t蜂鸣器
1.查找手册时钟图,输入12m想要通过pll得到400m的信号 2.对比pll值,找到最近的为405,得到pll中mdiv为127,pdiv为2,sdiv为1 3.想要得到fclk400,hclk100,pclk50,对比分频比例࿰…...
提交保存,要做重复请求拦截,避免出现重复保存的问题
**问题:**前端ajax提交数据的时候,当频繁点击的时候,或者两个账号以相同数据创建的时候,会出现问题。 **处理办法:**前端拦截,防止重复提交数据,在上一次请求返回结果之后才允许提交第二次&…...
华为 HCIP-Datacom H12-821 题库 (3)
有需要题库的可以看主页置顶 1.运行 OSPF 协议的路由器在交互 DD 报文时,会使用以下哪一个参数选举主从关系? A、接口的 IP 地址 B、接口的 DR 优先级 C、Area ID D、Router ID 答案:D 解析: Router-ID 大的为主&a…...
spring-boot 事件
事件触发时机常用监听器描述ApplicationStartingEvent应用启动时LoggingApplicationListener:决定加载哪个日志系统ApplicationEnvironmentPreparedEvent创建Environment之后BootstrapApplicationListener:加载spring-cloud bootstrap配置文件࿱…...
合碳智能 × Milvus:探索化学合成新境界——逆合成路线设计
合碳智能(C12.ai)成立于2022年,致力于运用AI和具身智能技术,为药物研发实验室提供新一代智能化解决方案,推动实验室从自动化迈向智能化,突破传统实验模式与人员的依赖,解决效率和成本的瓶颈&…...
二分查找 | 二分模板 | 二分题目解析
1.二分查找 二分查找的一个前提就是要保证数组是有序的(不准确)!利用二段性! 1.朴素二分模板 朴素二分法的查找中间的值和目标值比较 while(left < right) // 注意是要: < {int mid left (right -left) / 2;…...
uni-app应用更新(Android端)
关于app更新,uni-app官方推荐的是 uni-upgrade-center,看了下比较繁琐,因此这里自己实现检查更新并下载安装的逻辑。 1.界面效果 界面中的弹框和 进度条采用了uView 提供的组件 2.检查更新并下载安装 一、版本信息配置在服务端,…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...
群晖NAS如何在虚拟机创建飞牛NAS
套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
