当前位置: 首页 > news >正文

相机光学(三十六)——光圈

0.参考链接

(1)Hall光圈和Piris光圈的区别
(2)自动光圈及P-IRIS原理

1.光圈分类

  Hall光圈和Piris光圈是两种不同的光圈技术。它们之间的区别如下:

  • Hall光圈:Hall光圈是一种传统的光电子元件,通常由磁场感应元件(例如霍尔传感器)和电子控制装置组成。它通过控制电流,使光圈的大小调整到所需的大小,以控制光线进入相机的量。Hall光圈通常用于某些廉价摄像机或镜头,具有较为基本的光圈控制功能。

  • Piris光圈:Piris光圈是一种被动式的光圈控制技术,全称为“预留光圈无端圆夜视功能”。Piris利用镜头前部的光学元素和光学配合,通过光线传感器来自动调整光圈的大小。它可以根据环境光线的变化,在保持图像亮度稳定的同时,提供更准确的光圈控制,并有效减少镜头畸变和散光。

  综上所述,Hall光圈是一种较为简单和廉价的光圈技术,而Piris光圈是一种更先进和高性能的光圈控制技术。Piris光圈具有更好的光圈控制精度和可靠性,并可提供更高质量的图像和更好的适应不同的光照条件。相比之下,Hall光圈通常用于价格较低的相机或镜头中,提供基本的光圈控制功能。

2.从自动光圈(DC)到Piris光圈

  自动光圈能够根据光线亮度的变化自动调节光圈孔。早期的DC-IRIS只是单纯的根据光线亮度来调节光圈,并没有考虑光圈对其他图像因素(光圈)的影响。DC-IRIS只知道根据光线亮度来打开或关闭光圈,不能提供给摄像机光圈的位置,因此无法有效控制光圈大小以优化图像质量。
  P-IRIS是通过控制P-IRIS镜头中的步进电机动态精确的控制光圈大小。与DC-IRIS的主要任务是不停的调节光圈大小不同,P-IRIS的主要目的是设置最佳光圈位置,以便大部分镜头中心及效果最佳的部分得到使用,在此位置光学误差大大减小,从而提高图像质量。
  P-IrIS需要与增益和曝光时间相配合来管理光线的微小变化从而进一步优化图像质量,使最佳光圈位置保留尽可能长的时间。但超过增益和曝光时间的调节能力时,P-IRIS再调节光圈到不同位置。

相关文章:

相机光学(三十六)——光圈

0.参考链接 (1)Hall光圈和Piris光圈的区别 (2)自动光圈及P-IRIS原理 1.光圈分类 Hall光圈和Piris光圈是两种不同的光圈技术。它们之间的区别如下: Hall光圈:Hall光圈是一种传统的光电子元件,通…...

数据结构——树和二叉树

目录 一、树的概念 二、树结点之间的关系 三、二叉树 1、满二叉树 2、完全二叉树 四、二叉树的存储 1、顺序存储 2、链式存储 一、树的概念 如果数据和数据之间满足一对多的关系,将其逻辑结构称之为树 如下图:树的根与树的分支存在一对多的关系 将上…...

142. Go操作Kafka(confluent-kafka-go库)

文章目录 Apache kafka简介开始使用Apache Kafka构建生产者构建消费者 总结 之前已经有两篇文章介绍过 Go如何操作 kafka 28.windows安装kafka,Go操作kafka示例(sarama库) 51.Go操作kafka示例(kafka-go库) Apache ka…...

spring boot(学习笔记第十九课)

spring boot(学习笔记第十九课) Spring boot的batch框架,以及Swagger3(OpenAPI)整合 学习内容: Spring boot的batch框架Spring boot的Swagger3(OpenAPI)整合 1. Spring boot batch框架 Spring Batch是什么 Spring Batch 是一个…...

docker安装 redis 并且加密开启SSL/TLS通道

拉取镜像 docker pull registry.cn-hangzhou.aliyuncs.com/qiluo-images/redis:latest docker tag registry.cn-hangzhou.aliyuncs.com/qiluo-images/redis:latest redis:latest要在 Docker 容器中启动 Redis 并开启 SSL/TLS 加密,需按照以下步骤修改启动命令和配置…...

什么是ARM架构?什么是X86架构?两者的区别是什么?

一、什么是ARM架构 (一)起源于发展 ARM 架构由英国剑桥的 Acorn 计算机公司开发。因市场无合适产品,Acorn 自行设计出第一款微处理器,命名为 ARM。此后 ARM 架构不断发展,1990 年为与苹果合作成立 ARM 公司&#xff0…...

【vscode】vscode paste image插件设置

本文首发于 ❄️慕雪的寒舍 vscode编辑md文件的时候,如果想插入图片,自带的粘贴只会粘贴到当前目录下,也没有文件重命名,很不友好。 在扩展商店里面有mushan的Paste Image插件,相比自带的,更加友好一点。但…...

自定义string类

#include <iostream> #include <string> int main() { std::string str "Hello, World!"; // 使用 c_str() 将 std::string 转换为 C 风格字符串&#xff0c;并传递给 printf printf("The string is: %s\n", str.c_str()); // 尝试修改…...

Python | Leetcode Python题解之第387题字符串中的第一个唯一字符

题目&#xff1a; 题解&#xff1a; class Solution:def firstUniqChar(self, s: str) -> int:position dict()q collections.deque()n len(s)for i, ch in enumerate(s):if ch not in position:position[ch] iq.append((s[i], i))else:position[ch] -1while q and po…...

RocketMQ 消费时序列化报错问题分析及解决

问题背景 在2024年3月7日&#xff0c;系统消费 RocketMQ 消息时出现了序列化报错&#xff0c;错误信息显示为&#xff1a; java.io.InvalidClassException: com.xxx.xxx.bean.mg.GoodsChangeLogMessage; local class incompatible: stream classdesc serialVersionUID... 这是…...

全能与专精:探索未来AI模型的发展趋势与市场潜力

文章目录 每日一句正能量前言AI模型的全面评估和比较AI模型的专精化和可扩展性AI模型的合理使用和道德规范后记 每日一句正能量 一个人&#xff0c;如果没有经受过投资失败的痛楚&#xff0c;又怎么会看到绝望之后的海阔天空。很多时候&#xff0c;经历了人生中最艰难的事&…...

Python深度学习:【开源数据集系列】ImageNet数据集

ImageNet 是一个大规模的视觉数据集,是计算机视觉领域最重要的基准数据集之一。该数据集由普林斯顿大学和斯坦福大学的研究人员发起,于 2009 年推出。ImageNet 是用于物体分类、目标检测、图像分割、姿势估计等多种任务的通用数据集,尤其在深度学习和计算机视觉的突破性研究…...

微信小程序手写签名

微信小程序手写签名组件 该组件基于signature_pad封装&#xff0c;signature_pad本身是web端的插件&#xff0c;此处将插件代码修改为小程序端可用。 signature_pad.js /*!* Signature Pad v5.0.3 | https://github.com/szimek/signature_pad* (c) 2024 Szymon Nowak | Releas…...

Javascript 使用中点查找矩形的角(Find Corners of Rectangle using mid points)

考虑一个矩形 ABCD&#xff0c;我们给出了边 AD 和 BC 中点&#xff08;分别为 p 和 q&#xff09;的坐标以及它们的长度 L&#xff08;AD BC L&#xff09;。现在给定参数&#xff0c;我们需要打印 4 个点 A、B、C 和 D 的坐标。 例子&#xff1a; 输入&#xff1a;p (1,…...

【困难】 猿人学web第一届 第18题 jsvmp 洞察先机

文章目录 数据接口分析还原加密参数插桩调试分析日志插桩补充 python 代码 数据接口分析 数据接口 https://match.yuanrenxue.cn/match/18data 请求参数 {page: 页码, t: 时间戳, v: 加密值} 请求第一页不需要携带 t, v 参数 cookie 只需要携带 sessionid 只要 还原加密字段…...

IDEA Maven 源修改为国内阿里云镜像的正确方式

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐&#xff1a;「storm…...

OpenCV 旋转矩形边界

边界矩形是用最小面积绘制的&#xff0c;所以它也考虑了旋转。使用的函数是**cv.minAreaRect**()。 import cv2 import numpy as npimgcv2.imread(rD:\PythonProject\thunder.jpg) img1cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) print(img.dtype) ret,threshcv2.threshold(img1,1…...

人车防撞系统安全生产方案

根据《市场监管总局关于2021~2023年全国特种设备安全状况的通告》数据显示&#xff1a;2023年&#xff1a;全国共发生特种设备事故和相关事故71起&#xff0c;其中死亡69人。包含叉车在内的场(厂)内专用机动车辆事故29起、死亡28人&#xff0c;占事故总数的40.85%、死亡人数的4…...

开放式耳机哪个牌子好?长文传授6招秘籍,彻底远离坑货!

​大家好&#xff0c;作为一位专注于评测各类数码产品的博主&#xff0c;今天我特别推荐开放式耳机作为我们日常的首选。这种耳机以其独特的设计&#xff0c;避免了传统耳机长时间佩戴可能带来的不适和感染风险。开放式耳机佩戴简便且稳固&#xff0c;尤其适合热爱跑步和运动的…...

vue2和vue3双向绑定的原理

Vue.js 的双向绑定是 Vue 框架的核心特性之一&#xff0c;它允许数据和视图之间保持同步。虽然 Vue 2 和 Vue 3 都实现了双向绑定&#xff0c;但它们在实现细节上有所不同。 Vue 2 双向绑定的原理 在 Vue 2 中&#xff0c;双向绑定主要依赖于 Object.defineProperty 和观察者…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

tauri项目,如何在rust端读取电脑环境变量

如果想在前端通过调用来获取环境变量的值&#xff0c;可以通过标准的依赖&#xff1a; std::env::var(name).ok() 想在前端通过调用来获取&#xff0c;可以写一个command函数&#xff1a; #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...