线性代数之线性方程组
目录
线性方程组
1. 解的个数
齐次线性方程组:
非齐次线性方程组:
2. 齐次线性方程组的解
3. 非齐次线性方程组的解
4. 使用 Python 和 NumPy 求解线性方程组
示例代码
齐次线性方程组
非齐次线性方程组
示例结果
齐次线性方程组
非齐次线性方程组
线性方程组
1. 解的个数
-
齐次线性方程组:
- 只有零解:当系数矩阵的秩等于未知量的个数 𝑛n 时,即 rank(𝐴)=𝑛rank(A)=n。
- 有非零解:当系数矩阵的秩小于未知量的个数 𝑛n 时,即 rank(𝐴)<𝑛rank(A)<n。
-
非齐次线性方程组:
- 无解:当增广矩阵的秩不等于系数矩阵的秩,即 rank([𝐴∣𝑏])≠rank(𝐴)rank([A∣b])=rank(A)。
- 有解:
- 唯一解:当增广矩阵的秩等于系数矩阵的秩且等于未知量的个数 𝑛n,即 rank([𝐴∣𝑏])=rank(𝐴)=𝑛rank([A∣b])=rank(A)=n。
- 无穷多解:当增广矩阵的秩等于系数矩阵的秩但小于未知量的个数 𝑛n,即 rank([𝐴∣𝑏])=rank(𝐴)<𝑛rank([A∣b])=rank(A)<n。
2. 齐次线性方程组的解
- 基础解系:齐次线性方程组的基础解系是指一组线性无关的解向量,使得所有解都能表示为这些向量的线性组合。
- 求解步骤:
- 化简系数矩阵:将系数矩阵 𝐴A 化简为行阶梯形或行最简形。
- 列出方程:根据化简后的矩阵列出相应的方程。
- 确定自由未知量:找出方程组中的自由未知量(即那些不是其他未知量表达式的未知量)。
- 令自由未知量为线性无关组:设自由未知量为任意实数,并保证它们之间线性无关。
- 得到基础解系:利用自由未知量表达出其他未知量的解,从而得到基础解系。
- 写出一般解:将基础解系的解向量按自由未知量的不同取值线性组合,得到方程组的一般解。
3. 非齐次线性方程组的解
- 解的结构:非齐次线性方程组的解集可以表示为一个特解加上齐次方程组的所有解。
- 求解步骤:
- 求特解:通过数值方法或符号计算求出一个特解 𝑥𝑝xp。
- 求齐次方程组的基础解系:求出对应的齐次方程组 𝐴𝑥=0Ax=0 的基础解系。
- 写出一般解:一般解可以表示为 𝑥=𝑥𝑝+𝑐1𝑣1+𝑐2𝑣2+…+𝑐𝑘𝑣𝑘x=xp+c1v1+c2v2+…+ckvk,其中 𝑣𝑖vi 是齐次方程组的基础解系中的解向量。
4. 使用 Python 和 NumPy 求解线性方程组
齐次线性方程组:
- 通常用于求解特征值问题,例如求解特征向量。
- 使用
numpy.linalg.eig()
函数求解特征值和特征向量。非齐次线性方程组:
- 用于确定未知量的值。
- 使用
numpy.linalg.solve()
函数求解未知量。
下面分别给出齐次和非齐次线性方程组的例子,我们将使用 Python 和 NumPy 来求解这些例子。
示例代码
齐次线性方程组
import numpy as np# 定义系数矩阵 A
A = np.array([[3, 1], [1, 3]])# 使用 numpy.linalg.eig() 求解特征值和特征向量
eigenvalues, eigenvectors = np.linalg.eig(A)print("Eigenvalues:", eigenvalues)
print("Eigenvectors:", eigenvectors)
非齐次线性方程组
import numpy as np# 定义系数矩阵 A 和右侧向量 b
A = np.array([[2, -1, 0], [-1, 2, -1], [0, -1, 2]])
b = np.array([1, 0, -1])
6
# 使用 numpy.linalg.solve() 求解未知量
x = np.linalg.solve(A, b)print("Solution x:", x)
调用过程
import numpy as np
# 齐次线性方程组示例
# 定义系数矩阵 A
A_homogeneous = np.array([[3, 1], [1, 3]])# 使用 numpy.linalg.eig() 求解特征值和特征向量
eigenvalues_homogeneous, eigenvectors_homogeneous = np.linalg.eig(A_homogeneous)# 非齐次线性方程组示例
# 定义系数矩阵 A 和右侧向量 b
A_inhomogeneous = np.array([[2, -1, 0], [-1, 2, -1], [0, -1, 2]])
b_inhomogeneous = np.array([1, 0, -1])
# 使用 numpy.linalg.solve() 求解未知量
x_inhomogeneous = np.linalg.solve(A_inhomogeneous, b_inhomogeneous)
eigenvalues_homogeneous, eigenvectors_homogeneous, x_inhomogeneous
调用结果
(array([4., 2.]),
array([[ 0.70710678, -0.70710678],[ 0.70710678, 0.70710678]]),
array([ 0.5, 0. , -0.5]))
示例结果
齐次线性方程组
- 特征值:
Eigenvalues: [4. 2.]
- 特征向量:
Eigenvectors: [[ 0.70710678 -0.70710678][ 0.70710678 0.70710678]]
非齐次线性方程组
- 解:
Solution x: [ 0.5 0. -0.5]
从上面的结果可以看出:
- 对于齐次线性方程组,我们得到了两个特征值 4 和 2,以及对应的特征向量。特征向量代表了齐次方程组的解向量。
- 对于非齐次线性方程组,我们得到了未知量 𝑥x 的解为 [0.5,0,−0.5][0.5,0,−0.5]。
相关文章:

线性代数之线性方程组
目录 线性方程组 1. 解的个数 齐次线性方程组: 非齐次线性方程组: 2. 齐次线性方程组的解 3. 非齐次线性方程组的解 4. 使用 Python 和 NumPy 求解线性方程组 示例代码 齐次线性方程组 非齐次线性方程组 示例结果 齐次线性方程组 非齐次线性…...
速盾:怎么查看是否使用cdn服务?
CDN(Content Delivery Network),即内容分发网络,是一种加速网络内容传输的技术。通过在全球各地建立分布式的节点服务器,将网站的静态资源缓存到最近的节点服务器上,使用户可以从离自己地理位置最近的节点服…...

828华为云征文|采用Flexus云服务器X实例部署RTSP直播服务器
一、前言 这篇文章讲解: 采用华为云最新推出的Flexus云服务器X实例搭建RTSP服务器,完成视频直播需求。 随着实时视频流传输需求的增长,RTSP(实时流协议)服务器成为了许多视频监控、直播和多媒体应用的核心组件。在当…...
Spring Cloud Gateway(二)
Spring Cloud Gateway(二) 文章目录 Spring Cloud Gateway(二)Gateway工作原理为什么使用API网关高并发Gateway性能优化 Gateway工作原理 Spring Cloud Gateway旨在为微服务架构提供简单、有效并且统一的API路由管理方式。它不仅…...
docker 简易入门
# docker 简易入门 docker由几个组成部分 docker client: 即 docker 命令行工具 docker host: 宿主机,docker daemon 的运行环境服务器 docker daemon: docker 的守护进程,docker client 通过命令行与 docker daemon 交互 container: 最小型的一个操…...

【看雪-注册安全分析报告】
前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞…...
记录一个前端学习小组的收集的模版
问题1:输入“您的姓名”,选择“短答案”作为问题类型。问题2:输入“您是否愿意继续参加前端学习小组?”,选择“单选”作为问题类型,并添加选项“是”和“否”。问题3:输入“如果您选择‘是’&am…...

Rk3588 Android12 AIDL 开发
AIDL (Android Interface Definition Language) 和 HIDL (HAL Interface Definition Language) 都是 Android 系统中用于定义接口的工具,但它们有不同的用途和特性。 AIDL (Android Interface Definition Language) 用途: 主要用于应用程序之间的进程间…...
两个长整数字符串求和(不允许使用ES6+)
两个长整数字符串求和(不允许使用ES6), 面试手撸代码遇到到这个问题 1. 实现方式第一种 // 短整数字符串前边补 0; num需要补 0 的短整数字符串, len 长整数字符串的长度 function fillZero (num, len) {let str num.toString();if (str.length < len) {str 0.repeat(…...

11 Java 方法引用、异常处理、Java接口之函数式编程(接口知识补充Function<T,R>、BiFunction<T, U, R>和自定义泛型接口)
文章目录 前言一、Java接口之函数式编程 --- 接口知识补充1 Function<T,R>泛型接口2 BiFunction<T, U, R>泛型接口3 自定义泛型函数式编程接口4 使用lambda表达式、方法引用进行函数式编程二、方法引用1 方法引用初体验(以Array.sort()方法为例)(1)什么是方法引…...
深入探索 Go 语言的编译器与垃圾回收机制
Go 编译器 Go 编译器是通过 go 工具执行的,这个工具的功能不仅仅是生成可执行文件。你可以使用 go tool compile 命令来编译一个 Go 源文件。这个操作将生成一个目标文件,也就是 .o 后缀的文件。以下是在 macOS Mojave 系统上执行的命令和结果展示&…...

2024国赛数学建模-模拟火算法(MATLAB 实现)
模拟退火算法 1.1 算法原理 模拟退火算法的基本思想是从一给定解开始 ,从邻域 中随机产生另一个解 ,接受 Metropolis准则允许目标函数在 有限范围内变坏 ,它由一控制参数 t决定 ,其作用类似于物 理过程中的温度 T,对于控制参数的每一取值 ,算法持续进 行“产生 —判断 —接受…...
YOLOv8 只检测人 只画框不要标签
参考了这个:YOLOv8只检测人(或其他一种或者多种类别)_yolov8只检测指定类别-CSDN博客 1. 只检测人:predict的时候指定参数classes[0] 2. 只画框不要标签:plot的时候传入labelsFalse 3. 标签中去掉置信度:…...

如何将网络安全防范游戏化
组织对威胁的准备和恢复能力跟不上网络犯罪分子的进步。 一些首席执行官仍然认为网络安全需要偶尔干预,而不是持续关注。 但对于许多公司来说,情况并非如此;网络威胁准备需要协调一致的培训工作,因此网络安全团队在攻击发生时已…...

Qt QGraphicsView实现图片放缩、鼠标拖动移动、鼠标点位置放大缩小_图片查看
QtQGraphicsView实现图片放缩、鼠标拖动移动、鼠标点位置放大缩小 头文件: #ifndef TIMGWIDGET_H #define TIMGWIDGET_H#include <QGraphicsItem> #include <QMainWindow> #include <QObject> #include <QWidget>// class TImgWidget : pu…...

Percona Toolkit 神器全攻略(复制类)
Percona Toolkit 神器全攻略(复制类) Percona Toolkit 神器全攻略系列共八篇,前文回顾: 前文回顾Percona Toolkit 神器全攻略Percona Toolkit 神器全攻略(实用类)Percona Toolkit 神器全攻略(配…...
SQLite3 数据类型深入全面讲解
SQLite3,作为一款轻量级的数据库管理系统,在数据存储方面展现出了其独特的魅力。它不仅支持标准的SQL语法,还提供了丰富的数据类型供开发者选择。这些数据类型不仅涵盖了基本的数值和文本类型,还包括了日期时间、二进制数据等复杂…...
Python高效实现Trie(前缀树)及其插入和查找操作
Python高效实现Trie(前缀树)及其插入和查找操作 在Python面试中,考官通常会关注候选人的编程能力、问题解决能力以及对Python语言特性的理解。Trie(前缀树)是一种高效的数据结构,广泛应用于字符串处理、自动补全、拼写检查等场景。本文将详细介绍如何实现一个Trie,并提…...

傅里叶变换家族
禹晶、肖创柏、廖庆敏《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》 禹晶、肖创柏、廖庆敏《数字图像处理》资源二维码...

深度学习——强化学习算法介绍
强化学习算法介绍 强化学习讨论的问题是一个智能体(agent) 怎么在一个复杂不确定的环境(environment)里面去极大化它能获得的奖励。 强化学习和监督学习 强化学习有这个试错探索(trial-and-error exploration),它需要通过探索环境来获取对环境的理解。强化学习 ag…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...

【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
基于Uniapp的HarmonyOS 5.0体育应用开发攻略
一、技术架构设计 1.混合开发框架选型 (1)使用Uniapp 3.8版本支持ArkTS编译 (2)通过uni-harmony插件调用原生能力 (3)分层架构设计: graph TDA[UI层] -->|Vue语法| B(Uniapp框架)B --&g…...
OpenGL-什么是软OpenGL/软渲染/软光栅?
软OpenGL(Software OpenGL)或者软渲染指完全通过CPU模拟实现的OpenGL渲染方式(包括几何处理、光栅化、着色等),不依赖GPU硬件加速。这种模式通常性能较低,但兼容性极强,常用于不支持硬件加速…...
MeanFlow:何凯明新作,单步去噪图像生成新SOTA
1.简介 这篇文章介绍了一种名为MeanFlow的新型生成模型框架,旨在通过单步生成过程高效地将先验分布转换为数据分布。文章的核心创新在于引入了平均速度的概念,这一概念的引入使得模型能够通过单次函数评估完成从先验分布到数据分布的转换,显…...