当前位置: 首页 > news >正文

pytest实战演练

pytest实战演练

pycharm常见操作
创建项目使用虚拟环境

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

创建文件夹的时候建议使用的创建方式

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 这样创建是因为python3.0版本之后导包无区别,之前版本导包会报错的
_init_.py文件中建议为空不写内容

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

_all_=[]的含义
  • 是将列表中的方法或变量或类暴漏出去便于使用的
  • 生效方法,当调用模块中使用 import * 时才生效

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

联动git使用

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

pytes实战2

#####测试代码

#!/usr/bin/env python
# -*- coding:utf-8 -*-class Calc:def add(self, a, b):return a + bdef div(self, a, b):return a / b
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import unittestfrom pytest_exercise.python.calc import Calcclass TestCal(unittest.TestCase):def test_add_1(self):self.calc = Calc()result = self.calc.add(1, 2)self.assertEqual(3, result)if __name__ == '__main__':unittest.main()
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import sys
import unittestimport pytestfrom pytest_exercise.python.calc import Calcclass TestCal():def setup(self):self.calc = Calc()def test_add_1(self):result = self.calc.add(1, 2)print(result)assert 3 == resultdef test_div(self):self.calc = Calc()result = self.calc.div(2, 2)assert 1 == resultif __name__ == '__main__':pytest.main(["-vs", "test_pytest.py::TestCal::test_div"])
新特性,自定义变量后的数据类型提示格式
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# type:类星体是class Calc:def add(self, a: int, b: int) -> int:return a + bdef div(self, a, b):return a / b
pytest常用参数

#####pytest --collect-only

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

pytest按顺序执行
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import sys
import unittestimport pytestfrom pytest_exercise.python.calc import Calcclass TestCal():def setup(self):self.calc = Calc()@pytest.mark.run(order=2)def test_add_1(self):result = self.calc.add(1, 2)print(result)assert 3 == result@pytest.mark.run(order=1)def test_div(self):self.calc = Calc()result = self.calc.div(2, 2)assert 1 == resultif __name__ == '__main__':pytest.main(["-vs", "test_pytest.py::TestCal"])
pytest.ini文件的应用(修改匹配对应的测试用例的方法)

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

导出依赖包

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

反射代码片段
#!/usr/bin/env python
# -*- coding: utf-8 -*-class Person:def __init__(self, name):self.name = namedef eat(self):print(f"{self.name} is eating")p = Person('jerry')print(hasattr(p, 'name'))
f = getattr(p, "eat")
f()

init__(self, name):
self.name = name

def eat(self):print(f"{self.name} is eating")

p = Person(‘jerry’)

print(hasattr(p, ‘name’))
f = getattr(p, “eat”)
f()

相关文章:

pytest实战演练

pytest实战演练 pycharm常见操作 创建项目使用虚拟环境 创建文件夹的时候建议使用的创建方式 这样创建是因为python3.0版本之后导包无区别,之前版本导包会报错的 _init_.py文件中建议为空不写内容 _all_[]的含义 是将列表中的方法或变量或类暴漏出去便于使用的生效…...

7、关于LoFTR

7、关于LoFTR LoFTR论文链接:LoFTR LoFTR的提出,是将Transformer模型的注意力机制在特征匹配方向的应用,Transformer的提取特征的机制,在自身进行,本文提出可以的两张图像之间进行特征计算,非常适合进行特…...

硬件工程师笔试面试知识器件篇——电感

目录​​​​​​​ 3、电感 3.1、基础 电感原理图 电感实物图 3.1.1、定义与单位 1)定义: 2) 单位: 3.1.2、物理原理 1)法拉第电磁感应定律: 2)楞次定律: 3.1.3、电感器的构造 3.1.4、类型 3.1.5、应用 3.1.6、特性 3.1.7、设计考虑 3.2、相关问题 3.…...

代码随想录八股训练营第三十六天| C++

前言 一、push_back()和emplace_back()的区别? 1.1.push_back(): 1.2.emplace_back(): 1.3.区别总结: 1.4.使用场景: 二、map dequeu list 的实现原理? 2.1.std::map: 2.2. std::deque: 2.3. std::list: 2.4. 区别总结: 总结 前言…...

学习计算机网络

a类0~127,b类128~191,c类192~223 网络地址:看子网掩码,分网络位和主机位,后面是主机位,主机位全部为0,网络地址。 直接广播地址:看子网掩码,分网络位和主机位&#xff…...

Django发送邮件

【图书介绍】《Django 5企业级Web应用开发实战(视频教学版)》_django 5企业级web应用开发实战(视频教学版)-CSDN博客 Django 5框架Web应用开发_夏天又到了的博客-CSDN博客 本文学习怎么使用Django发送邮件。 尽管使用Python的smtplib模块发送电子邮件…...

T7:咖啡豆识别

T7:咖啡豆识别 **一、前期工作**1.设置GPU,导入库2.导入数据3.查看数据 **二、数据预处理**1.加载数据2.可视化数据3.配置数据集 **三、构建CNN网络模型**1、手动搭建2、直接调用官方模型 **四、编译模型****五、训练模型****六、模型评估****七、预测**八、暂时总结…...

【MATLAB】FIR滤波器的MATLAB实现

FIR滤波器的MATLAB实现 FIR滤波器的设计fir1函数fir2函数 与IIR滤波器相比,FIR滤波器既有其优势也有其局限性。FIR滤波器的主要优点包括: 精确的线性相位响应;永远保持稳定性;设计方法通常是线性的;在硬件实现中具有更…...

【RabbitMQ之一:windows环境下安装RabbitMQ】

目录 一、下载并安装Erlang1、下载Erlang2、安装Erlang3、配置环境变量4、验证erlang是否安装成功 二、下载并安装RabbitMQ1、下载RabbitMQ2、安装RabbitMQ3、配置环境变量4、验证RabbitMQ是否安装成功5、启动RabbitMQ服务(安装后服务默认自启动) 三、安…...

ISO26262和Aspice之间的关联

ASPICE 介绍: ASPICE(Automotive Software Process Improvement and Capability dEtermination)是汽车软件过程改进及能力评定的模型,它侧重于汽车软件的开发过程。ASPICE 定义了一系列的过程和活动,包括需求管理、软…...

对极约束及其性质 —— 公式详细推导

Title: 对极约束及其性质 —— 公式详细推导 文章目录 前言1. 对极约束 (Epipolar Constraint)2. 坐标转换 (Coordinate Transformations)3. 像素坐标 (Pixel Coordinates)4. 像素坐标转换 (Transformations of Pixel Coordinates)5. 本质矩阵 (Essential Matrix)6. 线坐标 (Co…...

【论文精读】SCINet-基于降采样和交互学习的时序卷积模型

《SCINet: Time Series Modeling and Forecasting with Sample Convolution and Interaction》的作者团队来自香港中文大学,发表在NeurIPS 2022会议上。 动机 该论文的出发点是观察到时间序列数据具有独特的属性:即使在将时间序列下采样成两个子序列后,时间关系(例如数据…...

深度学习与大模型第1课环境搭建

文章目录 深度学习与大模型第1课环境搭建1. 安装 Anaconda2. 修改环境变量2.1 修改 .condarc 文件2.2 使用 Anaconda Prompt 修改环境变量 3. 新建 .ipynb 文件 机器学习基础编程:常见问题: 深度学习与大模型第1课 环境搭建 1. 安装 Anaconda 首先&am…...

JDK新特性

LTS Record jdk16 不是方法 是一个定 # Sealed Class/Interface jdk17 限制只能由某些类继承 CompletableFuture jkd8 PatternMatching of instanceOf jdk16 switch expressions jdk14 Stream.collect() Collector Collector API Collector.groupBy Collector实战 1. …...

数据处理与数据填充在Pandas中的应用

在数据分析和机器学习项目中,数据处理是至关重要的一步。Pandas作为Python中用于数据分析和操作的一个强大库,提供了丰富的功能来处理和清洗数据。本文将深入探讨Pandas在数据处理,特别是数据填充方面的应用。 在实际的数据集中,…...

【百日算法计划】:每日一题,见证成长(010)

题目 合并两个排序的链表 输入两个递增排序的链表,合并这两个链表并使新链表中的节点仍然是递增排序的 示例1: 输入:1->2->4, 1->3->4 输出:1->1->2->3->4->4 思路 引入一个带虚拟头结点和tail指针的…...

【WPF】WPF学习之【二】布局学习

WPF布局学习 常用布局Grid网格布局StackPanel 布局CanvasDockPanel布局WrapPanel布局 常用布局 1、StackPanel: 学习如何使用StackPanel进行垂直和水平布局。 2、Grid: 掌握Grid的网格布局技术。 3、Canvas: 了解Canvas的绝对定位布局。 4、DockPanel: 学习DockPanel的停靠…...

KEIL中编译51程序 算法计算异常的疑问

KEIL开发 51 单片机程序 算法处理过程中遇到的问题 ...... by 矜辰所致前言 因为产品的更新换代, 把所有温湿度传感器都换成 SHT40 ,替换以前的 SHT21。在 STM32 系列产品上的替换都正常,但是在一块 51 内核的无线产品上面,数据…...

pikachu文件包含漏洞靶场

本地文件包含 1、先随意进行提交 可以得出是GET传参 可以在filename参数进行文件包含 2、准备一个2.jpg文件 内容为<?php phpinfo();?> 3、上传2.jpg文件 4、访问文件保存的路径uploads/2.jpg 5、将我们上传的文件包含进来 使用../返回上级目录 来进行包含木马文件 …...

基于DPU与SmartNIC的K8s Service解决方案

1. 方案背景 1.1. Kubernetes Service介绍 Kubernetes Service是Kubernetes中的一个核心概念&#xff0c;它定义了一种抽象&#xff0c;用于表示一组提供相同功能的Pods&#xff08;容器组&#xff09;的逻辑集合&#xff0c;并提供了一种方式让这些Pods能够被系统内的其他组…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...