当前位置: 首页 > news >正文

TensorRT-LLM高级用法

--multi_block_mode

decoding phase, 推理1个新token,

平时:按照batch样本,按照head,将计算平均分给所有SM;

batch_size*num_heads和SM数目相比较小时:有些SM会空闲;加了--multi_block_mode,似乎是将input context再进行划分,原来1个SM干的活儿,分给多个SM来干,让所有SM都并行忙碌起来;

其他证据:

"we only use multi-block in generation phase (generating new token). In context phase, we have enough blocks to run in parallel and we don't need to use multi-block."
"take H100-SXM as an example, you have 132 SMs, and let us say the batch size is 1, num heads is 16, then normally we can split the sequence into (132/16 = 8) blocks to fully utilize all SMs, but if the sequence length is quite small like 1K, it might not worth 8 blocks per sequence (maybe fewer)."

支持llama格式和hf格式

llama格式,要使用--meta_ckpt_dir:

# Build LLaMA v3 70B TP=8 using Meta checkpoints directly.
python convert_checkpoint.py --meta_ckpt_dir ./tmp/llama/70B/ \--output_dir ./tllm_checkpoint_8gpu_tp8 \--dtype float16 \--tp_size 8

hf格式,使用--model_dir:

# Build LLaMA v3 70B using 4-way tensor parallelism and 2-way pipeline parallelism.
python convert_checkpoint.py --model_dir ./tmp/llama/70B/hf/ \--output_dir ./tllm_checkpoint_8gpu_tp4_pp2 \--dtype float16 \--tp_size 4 \--pp_size 2

推理显存占用分析

Total memory = (Model size + KV cache size + Activation memory) / Parallelism

where

  • The model size is the number of parameters * the size of data type.
  • The KV cache size is the total number of tokens * the size of KV cache data type * the number of layers * the KV hidden dimension
  • The activation memory is determined by TRT engine, which can be a few GBs regardless of the degree of parallelism used

For LLaMA v2 70B FP16 weights + FP8 KV cache, the model size is 70B parameters * 2 bytes = 140GB. The KV cache size is 32K tokens * 1 bytes * 80 layers * 2048 KV hidden dimension = 5GB per 32K tokens. We have 145GB spread across 8 GPUs. The end result is ~18GB per GPU plus some GBs of flat scratch/activation memory allocated by TRT engine and the TRT-LLM runtime.

Note that the KV hidden dimension is derived by the number of KV heads times hidden dimension of each head. LLaMA v2 70B has hidden dimension of 8192, and uses grouped-query attention where 8 key heads and 8 value heads are associated with 64 query heads. Each head has hidden dimension of 8192/64 = 128. So the hidden dimension for KV in total is 128 * 8 * 2 = 2048. (2是K和V)

The total number of tokens is determined by beam width, batch size, and maximum sequence length.

相关文章:

TensorRT-LLM高级用法

--multi_block_mode decoding phase, 推理1个新token, 平时:按照batch样本,按照head,将计算平均分给所有SM; batch_size*num_heads和SM数目相比较小时:有些SM会空闲;加了--multi_block_mode&…...

文心一言功能新升级:读文档、懂翻译、能识图

9月4日,百度文心一言官网显示,在向全社会开放一周年之际,文心一言进行了功能最新全面升级,同时在周年期间为新老会员增加1个月专业版免费使用体验。 据了解,针对网页版用户需求,文心一言实现了创作内容更加…...

C++机试——走方格的方案

题目 请计算n*m的棋盘格子(n为横向的格子数,m为竖向的格子数)从棋盘左上角出发沿着边缘线从左上角走到右下角,总共有多少种走法,要求不能走回头路,即:只能往右和往下走,不能往左和往…...

Bootstrap 字体图标无法显示问题,<i>标签字体图标无法显示问题

bootstrap fileInput 以及 Bootstrap 字体图标无法显示问题。 今天在用 bootstrap fileInput 插件的时候发现图标无法显示&#xff0c;如下&#xff1a; 查看DOM&#xff0c;发现那些图标是<i>标签做的&#xff1a; 网上的方案 方案1 网上很多人说是我们打乱了boots…...

docker registry 仓库加密

docker registry 仓库加密 1、背景 ​ 公司一直用的镜像仓库是docker registry&#xff0c;但是有个安全问题&#xff0c;就是仓库从web ui的浏览到镜像的拉取都是可以直接使用的&#xff0c;还是放到了公网上&#xff0c;只需要知道你的域名那就是畅通无阻了&#xff0c;可以…...

利用高德+ArcGIS优雅获取任何感兴趣的矢量边界

荷花十里&#xff0c;清风鉴水&#xff0c;明月天衣。 四时之景不同&#xff0c;乐亦无穷尽也。今天呢&#xff0c;梧桐君给大家讲解一下&#xff0c;如何利用高德地图&#xff0c;随机所欲的获取shp边界数据。 文章主要分成以下几个步骤&#xff1a; 首先搜索你想获取的矢量…...

炮弹【USACO】

题目背景 时/空限制&#xff1a;1s / 64MB 题目描述 贝茜已经精通了变成炮弹并沿着长度为 N 的数轴弹跳的艺术&#xff0c;数轴上的位置从左到右编号为 1,2,…,N 。 她从某个整数位置 S 开始&#xff0c;以 1 的起始能量向右弹跳。 如果贝茜的能量为 k &#xff0c;则她将…...

python如何读取excel文件内的数据

目录 前言一、安装openpyxl二、读取Excel数据总结前言 在Python中读取Excel数据,最常用的库之一是openpyxl(用于.xlsx格式)和xlrd(尽管xlrd从版本2.0开始不再支持.xlsx,仅支持旧的.xls格式)。然而,对于大多数现代应用来说,openpyxl是一个更好的选择,因为它支持.xlsx格…...

Java项目: 基于SpringBoot+mybatis+maven+mysql教师工作量管理系统(含源码+数据库+毕业论文)

一、项目简介 本项目是一套基于SpringBootmybatismavenmysql教师工作量管理系统 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xff0c;eclipse或者idea 确保可以运行&#xff01; 该系统功能完善、界面美观…...

项目开发--数据库--postgresql数据库操作

背景 1、安装postgresql的基础方法 2、基本操作命令 解决方案 安装命令 在ubuntu环境当中进行安装。 sudo apt install postgresql安装完毕之后直接进行测试&#xff0c;如果看到如下内容则安装成功。 sudo systemctl status postgresql使用DBeaver进行连接报错&#xff…...

c语言——用一维数组输出杨辉三角形

一.代码 #include <stdio.h> int Num[100]; int Hang; int Lie; int a; int Flag; int main() {Lie 1;Hang 1;a 0;while (1) {//列1为1if (Lie 1) {Num[1] 1;Lie;}//数据存到数组里面while (Hang > Lie && Hang ! 2) { if (Hang!Lie) {Flag Num[Lie] …...

Codeforces Round 971 (Div. 4) (A~G1)

A、B题太简单&#xff0c;不做解释 C 对于 x y 两个方向&#xff0c;每一个方向至少需要 x / k 向上取整的步数&#xff0c;取最大值。 由于 x 方向先移动&#xff0c;假如 x 方向需要的步数多于 y 方向的步数&#xff0c;那么最后 y 方向的那一步就不需要了&#xff0c;答案…...

为什么构造函数不能为虚函数?为什么析构函数可以为虚函数,如果不设为虚函数可能会存在什么问题?

目录 一、为什么构造函数不能为虚函数&#xff1f; 二、为什么析构函数可以是虚函数&#xff1f;如果不设为虚函数可能会存在什么问题&#xff1f; 构造函数不能为虚函数&#xff0c;因为在构造过程中&#xff0c;虚函数机制尚未生效&#xff0c;对象还未完成构造&#xff0c…...

【数据结构】单链表功能的实现

目录 1.链表的概念及结构 2.单链表功能的实现 2.1打印单链表 2.2创建节点 2.3单链表尾插 2.3单链表头插 2.5单链表尾删 2.6单链表头删 2.7单链表的查找 2.8在指定位置之前插入数据 2.9在指定位置之后插入数据 2.10删除pos节点 2.11删除pos之后的节点 2.12销毁链表…...

最新车型库大全|阿里云实现调用API接口

整体请求流程&#xff1a; 介绍&#xff1a; 本次解析通过阿里云云市场的云服务来实现查询车型库大全查询&#xff0c;首先需要选择一家可以提供查询的商品。 [探数API]车型库查询_API专区_云市场-阿里云 步骤1: 选择商品 如图点击免费试用&#xff0c;即可免费申请该接口数…...

70. 爬楼梯

70. 爬楼梯 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢&#xff1f; 示例 1&#xff1a; 输入&#xff1a;n 2 输出&#xff1a;2 解释&#xff1a;有两种方法可以爬到楼顶。 1.1 阶 1 阶 2.2 阶 示例…...

pytorch正向传播没问题,loss.backward()使定义的神经网络中权重参数变为nan

记录一个非常坑爹的bug:loss回传导致神经网络中一个linear层的权重参数变为nan 1.首先loss值是正常数值&#xff1b; 2.查了好多网上的解决办法&#xff1a;检查原始输入神经网络数据有没有nan值&#xff0c;初始化权重参数&#xff0c;使用relu激活函数&#xff0c;梯度裁剪&a…...

❤《实战纪录片 1 》原生开发小程序中遇到的问题和解决方案

《实战纪录片 1 》原生开发小程序中遇到的问题和解决方案 文章目录 《实战纪录片 1 》原生开发小程序中遇到的问题和解决方案1、问题一&#xff1a;原生开发中 request请求中返回 的数据无法 使用this传递给 data{}中怎么办&#xff1f;2、刚登录后如何将token信息保存&#xf…...

2024.9.6 作业

手写unique_ptr指针指针 代码&#xff1a; #include <iostream> #include <stdexcept>template <typename T> class unique_ptr { public:// 构造函数explicit unique_ptr(T* ptr nullptr) : m_ptr(ptr) {}// 析构函数~unique_ptr() {delete m_ptr;}// 禁…...

2024年架构设计师论文-“模型驱动架构设计方法及其应用”

论模型驱动架构设计方法及其应用 模型驱动架构设计是一种用于应用系统开发的软件设计方法&#xff0c;以模型构造、模型转换和精化为核心&#xff0c;提供了一套软件设计的指导规范。在模型驱动架构环境下&#xff0c;通过创建出机器可读和高度抽象的模型实现对不同问题域的描述…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

DAY 26 函数专题1

函数定义与参数知识点回顾&#xff1a;1. 函数的定义2. 变量作用域&#xff1a;局部变量和全局变量3. 函数的参数类型&#xff1a;位置参数、默认参数、不定参数4. 传递参数的手段&#xff1a;关键词参数5 题目1&#xff1a;计算圆的面积 任务&#xff1a; 编写一…...

FTXUI::Dom 模块

DOM 模块定义了分层的 FTXUI::Element 树&#xff0c;可用于构建复杂的终端界面&#xff0c;支持响应终端尺寸变化。 namespace ftxui {...// 定义文档 定义布局盒子 Element document vbox({// 设置文本 设置加粗 设置文本颜色text("The window") | bold | color(…...