实验记录 | 点云处理 | K-NN算法3种实现的性能比较
引言
K近邻(K-Nearest Neighbors, KNN)算法作为一种经典的无监督学习算法,在点云处理中的应用尤为广泛。它通过计算点与点之间的距离来寻找数据点的邻居,从而有效进行点云分类、聚类和特征提取。本菜在复现点云文章过程,遇到了三种 KNN 的实现方式,故在此一并对比总结,最后对三种实现方案进行了性能比较。
在本文中,我将K近邻(KNN)算法的应用分为两种情况:
-
全局查询:对整个点云的所有 N 个点进行查询,找到每个点的 K 个最近邻点,最终返回的结果维度为 [B, N, K],B 表示批次大小,N 表示点的总数量,K 表示每个点的邻近点数量。
-
局部查询:针对已知的 S 个查询点,在整个点云的 N 个点中寻找每个查询点的 K 个最近邻点,最终返回的结果维度为 [B, S, K],其中 S 表示查询点的数量。
全局查询
def knn(x, k):"""Input:x: all points, [B, C, N]k: k nearest points of each pointReturn:idx: grouped points index, [B, N, k]"""inner = -2*torch.matmul(x.transpose(2, 1), x)xx = torch.sum(x**2, dim=1, keepdim=True)pairwise_distance = -xx - inner - xx.transpose(2, 1)idx = pairwise_distance.topk(k=k, dim=-1)[1] # (batch_size, num_points, k)return idx
这段代码来源于点云网络的高引之作《Dynamic Graph CNN for Learning on Point Clouds》,实现了一个 KNN(K近邻)查询,目的是计算点云中每个点的 k 个最近邻点的索引。
函数清晰易懂,便不赘述。我一直以为点云学习是需要先采样,再用采样得到的中心点进行 KNN 邻域查询,直到看到这篇 DGCNN 的方法,才打破了我的固有认知:DGCNN没有下采样过程,直接使用 N 个点进行近邻查询和特征更新。
插个题外话,这篇文章真的值得一读,简单高效!不愧是高引之作。
局部查询
(1)knn_point 函数
def square_distance(src, dst):"""Calculate Euclid distance between each two points.src^T * dst = xn * xm + yn * ym + zn * zm;sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2= sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dstInput:src: source points, [B, N, C]dst: target points, [B, M, C]Output:dist: per-point square distance, [B, N, M]"""B, N, _ = src.shape_, M, _ = dst.shapedist = -2 * torch.matmul(src, dst.permute(0, 2, 1))dist += torch.sum(src ** 2, -1).view(B, N, 1)dist += torch.sum(dst ** 2, -1).view(B, 1, M)return distdef knn_point(nsample, xyz, new_xyz):"""Input:nsample: max sample number in local regionxyz: all points, [B, N, C]new_xyz: query points, [B, S, C]Return:group_idx: grouped points index, [B, S, nsample]"""sqrdists = square_distance(new_xyz, xyz)_, group_idx = torch.topk(sqrdists, nsample, dim=-1, largest=False, sorted=False)return group_idx
这段代码来源于另一个高引之作《Rethinking Network Design and Local Geometry in Point Cloud: A Simple Residual MLP Framework》,代码也是相当眉清目秀,不再赘述。其实这份代码的实现还是比较经典的,很多的模型代码都可以看到它的身影。
(2)knn_cuda 库函数
import torch# Make sure your CUDA is available.
assert torch.cuda.is_available()from knn_cuda import KNN
"""
if transpose_mode is True, ref is Tensor [bs x nr x dim]query is Tensor [bs x nq x dim]return dist is Tensor [bs x nq x k]indx is Tensor [bs x nq x k]
elseref is Tensor [bs x dim x nr]query is Tensor [bs x dim x nq]return dist is Tensor [bs x k x nq]indx is Tensor [bs x k x nq]
"""knn = KNN(k=10, transpose_mode=True)ref = torch.rand(32, 1000, 5).cuda()
query = torch.rand(32, 50, 5).cuda()dist, indx = knn(ref, query) # 32 x 50 x 10
大佬把 KNN 封装为了库函数,来源于 KNN_CUDA 此仓库,可以参考 readme 进行安装。库函数的调用也非常方便。
需要强调的是,这里提到的 knn_point 和 knn_cuda 虽然算局部查询,但其实只要将局部查询点云 [B, S, Dim] 换成全局点云 [B, N, Dim] 作为输入,也就是全局查询了。
性能比较
(1)测试代码
import torch
import time
from knn_cuda import KNNdef knn(x, k):inner = -2*torch.matmul(x.transpose(2, 1), x)xx = torch.sum(x**2, dim=1, keepdim=True)pairwise_distance = -xx - inner - xx.transpose(2, 1)idx = pairwise_distance.topk(k=k, dim=-1)[1] # (batch_size, num_points, k)return idxdef square_distance(src, dst):B, N, _ = src.shape_, M, _ = dst.shapedist = -2 * torch.matmul(src, dst.permute(0, 2, 1))dist += torch.sum(src ** 2, -1).view(B, N, 1)dist += torch.sum(dst ** 2, -1).view(B, 1, M)return distdef knn_point(nsample, xyz, new_xyz):sqrdists = square_distance(new_xyz, xyz)_, group_idx = torch.topk(sqrdists, nsample, dim=-1, largest=False, sorted=False)return group_idx# Custom knn implementation
def test_knn(query, k, times):query = query.permute(0,2,1)start_time = time.time() # Start timerfor i in range(times):indx = knn(query, k = k)end_time = time.time() # End timerreturn end_time - start_time # Return elapsed time# Custom knn_point implementation
def test_knn_point(ref, query, k, times):start_time = time.time() # Start timerfor i in range(times):indx = knn_point(k, ref, query)end_time = time.time() # End timerreturn end_time - start_time # Return elapsed time# knn_cuda implementation
def test_knn_cuda(ref, query, k, times):knn = KNN(k=k, transpose_mode=True)start_time = time.time() # Start timerfor i in range(times):dist, indx = knn(ref, query)end_time = time.time() # End timerreturn end_time - start_time # Return elapsed time# Main testing function
def test_knn_methods(ref, query, k, times):print("Test times: %d" % times)# Test custom knntime_knn = test_knn(query, k, times)print(f"knn : {time_knn:.6f} seconds")# Test custom knn_pointtime_point = test_knn_point(ref, query, k, times)print(f"knn_point: {time_point:.6f} seconds")# Test knn_cudatime_cuda = test_knn_cuda(ref, query, k, times)print(f"knn_cuda : {time_cuda:.6f} seconds")if __name__ == '__main__':# Sample inputB, N, S, C = 32, 1024, 50, 3 # Batch size, total points, query points, coordinatesk = 24 # Number of nearest neighborsref = torch.randn(B, N, C).cuda() # Reference points# Test above methodstimes_list = [1,2,3,10,50,100]for times in times_list:test_knn_methods(ref, ref, k, times)
这段代码测试了三种 K 近邻(KNN)算法的实现效率,分别是自定义的 knn、knn_point 以及基于 knn_cuda 库的实现。分别对每种方法运行多次,记录每种方法在不同重复次数(如 1、2、3、10、50、100 次)的运行时间,最终输出各方法的执行时间。
上图展示了测试代码的结果,可以看到 knn_cuda 的实现方式表现最差的(我也表示非常不理解);knn 和 knn_point 性能表现相当。或许这也是为什么很多较新的模型使用的也是 knn_point,而不是 knn_cuda。
当然,这份测试代码实际是在一个小规模数据的单卡上进行的,或许无法很好地展现出他们在实际训练的性能,因此我又分别将他们部署在 DGCNN 模型上进行训练,对比性能。
(2)模型训练
直接将他们部署在模型的训练中,能够最真实反映出他们的性能。这次实验,Batchsize 设置为了32,epoch 设置为256,选择前2个epoch观察。从训练状态可以看到,红色框选区域表示训练和测试的时间,knn_cuda 依然稳定发挥,表现最差哈哈哈哈,knn 和 knn_point 的函数实现表现相当。
总结
我原以为 knn_cuda 会很厉害,毕竟是直接封装起来了,但实际表现不尽人意。看似很小的性能差异,放在规模较大的数据集上,训练成本可是指数级倍增的。所以,还是尽可能使用 knn 和 knn_point 来实现全局/局部的邻近查询。
相关文章:
实验记录 | 点云处理 | K-NN算法3种实现的性能比较
引言 K近邻(K-Nearest Neighbors, KNN)算法作为一种经典的无监督学习算法,在点云处理中的应用尤为广泛。它通过计算点与点之间的距离来寻找数据点的邻居,从而有效进行点云分类、聚类和特征提取。本菜在复现点云文章过程ÿ…...
【OJ】常用技巧
1. 模版 #include<bits/stdc.h> using namespace std;int main(){ios::sync_with_stdio(false);cin.tie(0);// write herereturn 0; }2. 填充数组 memset是一个字节一个字节填充,如果是使int类型填充非0或者-1就会报错,如 int a[100]; memset(a…...
Redis:Redis性能变慢的原因
一、淘汰策略性能问题 当使用Redis当作缓存使用时,通常会给这个实例设置内存上限maxmemory,然后设置一个数据淘汰策略;如果Redis实例设置了内存上限maxmemory,那么也有可能导致Redis变慢。 原因在于,当Redis内存达到…...
Linux多线程——利用C++模板对pthread线程库封装
文章目录 线程封装主要框架线程启动线程等待其他信息 测试函数 线程封装 我们之前介绍过pthread的线程库,这个线程库主要是基于C语言的void*指针来进行传参和返回 我们使用C的模板对其封装可以让他的使用更加方便,并且经过测试可以让我们更加直观的了解…...
SpringBoot教程(十五) | SpringBoot集成RabbitMq(消息丢失、消息重复、消息顺序、消息顺序)
SpringBoot教程(十五) | SpringBoot集成RabbitMq(消息丢失、消息重复、消息顺序、消息顺序) RabbitMQ常见问题解决方案问题一:消息丢失的解决方案(1)生成者丢失消息丢失的情景解决方案1…...
TensorRT-LLM高级用法
--multi_block_mode decoding phase, 推理1个新token, 平时:按照batch样本,按照head,将计算平均分给所有SM; batch_size*num_heads和SM数目相比较小时:有些SM会空闲;加了--multi_block_mode&…...
文心一言功能新升级:读文档、懂翻译、能识图
9月4日,百度文心一言官网显示,在向全社会开放一周年之际,文心一言进行了功能最新全面升级,同时在周年期间为新老会员增加1个月专业版免费使用体验。 据了解,针对网页版用户需求,文心一言实现了创作内容更加…...
C++机试——走方格的方案
题目 请计算n*m的棋盘格子(n为横向的格子数,m为竖向的格子数)从棋盘左上角出发沿着边缘线从左上角走到右下角,总共有多少种走法,要求不能走回头路,即:只能往右和往下走,不能往左和往…...
Bootstrap 字体图标无法显示问题,<i>标签字体图标无法显示问题
bootstrap fileInput 以及 Bootstrap 字体图标无法显示问题。 今天在用 bootstrap fileInput 插件的时候发现图标无法显示,如下: 查看DOM,发现那些图标是<i>标签做的: 网上的方案 方案1 网上很多人说是我们打乱了boots…...
docker registry 仓库加密
docker registry 仓库加密 1、背景 公司一直用的镜像仓库是docker registry,但是有个安全问题,就是仓库从web ui的浏览到镜像的拉取都是可以直接使用的,还是放到了公网上,只需要知道你的域名那就是畅通无阻了,可以…...
利用高德+ArcGIS优雅获取任何感兴趣的矢量边界
荷花十里,清风鉴水,明月天衣。 四时之景不同,乐亦无穷尽也。今天呢,梧桐君给大家讲解一下,如何利用高德地图,随机所欲的获取shp边界数据。 文章主要分成以下几个步骤: 首先搜索你想获取的矢量…...
炮弹【USACO】
题目背景 时/空限制:1s / 64MB 题目描述 贝茜已经精通了变成炮弹并沿着长度为 N 的数轴弹跳的艺术,数轴上的位置从左到右编号为 1,2,…,N 。 她从某个整数位置 S 开始,以 1 的起始能量向右弹跳。 如果贝茜的能量为 k ,则她将…...
python如何读取excel文件内的数据
目录 前言一、安装openpyxl二、读取Excel数据总结前言 在Python中读取Excel数据,最常用的库之一是openpyxl(用于.xlsx格式)和xlrd(尽管xlrd从版本2.0开始不再支持.xlsx,仅支持旧的.xls格式)。然而,对于大多数现代应用来说,openpyxl是一个更好的选择,因为它支持.xlsx格…...
Java项目: 基于SpringBoot+mybatis+maven+mysql教师工作量管理系统(含源码+数据库+毕业论文)
一、项目简介 本项目是一套基于SpringBootmybatismavenmysql教师工作量管理系统 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,eclipse或者idea 确保可以运行! 该系统功能完善、界面美观…...
项目开发--数据库--postgresql数据库操作
背景 1、安装postgresql的基础方法 2、基本操作命令 解决方案 安装命令 在ubuntu环境当中进行安装。 sudo apt install postgresql安装完毕之后直接进行测试,如果看到如下内容则安装成功。 sudo systemctl status postgresql使用DBeaver进行连接报错ÿ…...
c语言——用一维数组输出杨辉三角形
一.代码 #include <stdio.h> int Num[100]; int Hang; int Lie; int a; int Flag; int main() {Lie 1;Hang 1;a 0;while (1) {//列1为1if (Lie 1) {Num[1] 1;Lie;}//数据存到数组里面while (Hang > Lie && Hang ! 2) { if (Hang!Lie) {Flag Num[Lie] …...
Codeforces Round 971 (Div. 4) (A~G1)
A、B题太简单,不做解释 C 对于 x y 两个方向,每一个方向至少需要 x / k 向上取整的步数,取最大值。 由于 x 方向先移动,假如 x 方向需要的步数多于 y 方向的步数,那么最后 y 方向的那一步就不需要了,答案…...
为什么构造函数不能为虚函数?为什么析构函数可以为虚函数,如果不设为虚函数可能会存在什么问题?
目录 一、为什么构造函数不能为虚函数? 二、为什么析构函数可以是虚函数?如果不设为虚函数可能会存在什么问题? 构造函数不能为虚函数,因为在构造过程中,虚函数机制尚未生效,对象还未完成构造,…...
【数据结构】单链表功能的实现
目录 1.链表的概念及结构 2.单链表功能的实现 2.1打印单链表 2.2创建节点 2.3单链表尾插 2.3单链表头插 2.5单链表尾删 2.6单链表头删 2.7单链表的查找 2.8在指定位置之前插入数据 2.9在指定位置之后插入数据 2.10删除pos节点 2.11删除pos之后的节点 2.12销毁链表…...
最新车型库大全|阿里云实现调用API接口
整体请求流程: 介绍: 本次解析通过阿里云云市场的云服务来实现查询车型库大全查询,首先需要选择一家可以提供查询的商品。 [探数API]车型库查询_API专区_云市场-阿里云 步骤1: 选择商品 如图点击免费试用,即可免费申请该接口数…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
mac:大模型系列测试
0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...
GraphRAG优化新思路-开源的ROGRAG框架
目前的如微软开源的GraphRAG的工作流程都较为复杂,难以孤立地评估各个组件的贡献,传统的检索方法在处理复杂推理任务时可能不够有效,特别是在需要理解实体间关系或多跳知识的情况下。先说结论,看完后感觉这个框架性能上不会比Grap…...
