当前位置: 首页 > news >正文

大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(已更完)
  • Flink(正在更新!)

章节内容

上节我们完成了如下的内容:

  • Flink 并行度
  • Flink 并行度详解
  • Flink 并行度 案例
    在这里插入图片描述

状态类型

Flink根据是否需要保存中间结果,把计算分为有状态计算和无状态计算。

  • 有状态计算:依赖之前或之后的事件
  • 无状态计算:独立

根据数据结构不同,Flink定义了多种State,应用于不同的场景。

  • ValueState:即类型为T的单值状态,这个状态与对应的Key绑定,是最简单的状态了。它可以通过update方法更新状态值,通过 value() 方法获取状态值
  • ListState:即Key上的状态值为一个列表,可以通过add方法往列表中附加值,也可以通过get()方法返回一个Iterable来遍历状态值
  • ReducingState:这种状态通过用户传入的ReduceFunction,每次调用add方法添加值的时候,会调用ReduceFunction,最后合并到一个单一的状态值。
  • FoldingState:跟ReducingState有点类似,不过它的状态值类型可以与add方法中传入的元素类型不同(这种状态会在未来的Flink版本当中删除)
  • MapState:即状态值为一个Map,用户通过put和putAll方法添加元素

State按照是否有Key划分为:

  • KeyedState
  • OperatorState

案例1 利用State求平均值

实现思路

  • 读数据源
  • 将数据源根据Key分组
  • 按照Key分组策略,对流式数据调用状态化处理:实例化出一个状态实例,随着流式数据的到来更新状态,最后输出结果

编写代码

package icu.wzk;import org.apache.flink.api.common.functions.RichFlatMapFunction;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;public class FlinkStateTest01 {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);DataStreamSource<Tuple2<Long, Long>> data = env.fromElements(Tuple2.of(1L, 3L),Tuple2.of(1L, 5L),Tuple2.of(1L, 7L),Tuple2.of(1L, 4L),Tuple2.of(1L, 2L));KeyedStream<Tuple2<Long, Long>, Long> keyed = data.keyBy(new KeySelector<Tuple2<Long, Long>, Long>() {@Overridepublic Long getKey(Tuple2<Long, Long> value) throws Exception {return value.f0;}});SingleOutputStreamOperator<Tuple2<Long, Long>> flatMapped = keyed.flatMap(new RichFlatMapFunction<Tuple2<Long, Long>, Tuple2<Long, Long>>() {private transient ValueState<Tuple2<Long, Long>> sum;@Overridepublic void flatMap(Tuple2<Long, Long> value, Collector<Tuple2<Long, Long>> out) throws Exception {Tuple2<Long, Long> currentSum = sum.value();if (currentSum == null) {currentSum = Tuple2.of(0L, 0L);}// 更新currentSum.f0 += 1L;currentSum.f1 += value.f1;System.out.println("currentValue: " + currentSum);// 更新状态值sum.update(currentSum);// 如果 count >= 5 清空状态值 重新计算if (currentSum.f0 >= 5) {out.collect(new Tuple2<>(value.f0, currentSum.f1 / currentSum.f0));sum.clear();}}@Overridepublic void open(Configuration parameters) throws Exception {ValueStateDescriptor<Tuple2<Long, Long>> descriptor = new ValueStateDescriptor<>("average",TypeInformation.of(new TypeHint<Tuple2<Long, Long>>() {}));sum = getRuntimeContext().getState(descriptor);}});flatMapped.print();env.execute("Flink State Test");}
}

运行结果

在这里插入图片描述

执行分析

在这里插入图片描述
在这里插入图片描述

Keyed State

表示和Key相关的一种State, 只能用于KeyedStream类型数据集对应的Function和Operator之上,KeyedState是OperatorState的特例,区别在于KeyedState事先按照Key对数据集进行了区分,每个KeyState仅对应一个Operator和Key的组合。

KeyedState可以通过KeyGroups进行管理,主要用于当算子并行度发生变化时,自动重新分布KeyedState数据。在系统运行过程中,一个Keyed算子实例可能运行一个或者多个KeyGroups的Keys。

Operator State

与 Keyed State 不同的是,Operator State 只和并行的算子实例绑定,和数据元素中的Key无关,每个算子实例中持有所有数据元素中的一部分状态数据。Operator State 支持算子实例并行度发生变化时自动重新分配状态数据。

同时在Flink中KeyedState和OperatorState均具有两种形式,其中一种为托管状态(Managed State)形式,由FlinkRuntime中控制和管理状态数据,并将状态数据转换为内存HashTables或RocksDB的对象存储,然后将这些状态数据通过内部的接口持久话到CheckPoints中,任务异常时可以通过这些状态数据恢复任务。另外一种是原生状态(Row State)形式,由算子自己管理数据结构,当触发CheckPoint中,当从CheckPoint恢复任务时,算子自己再返序列化出状态的数据结构。

DataStreamAPI支持使用ManagedState和RawState两种状态形式,在Flink中推荐用户使用ManagedState管理状态数据,主要原因是ManagedState能够更好地支持状态数据的重平衡以及更加完善的内存管理。

状态描述

在这里插入图片描述

State既然是暴露给用户的,那么就需要有一些属性需要指定:

  • State名称
  • Value Serializer
  • State Type Info

在对应的StateBackend中,会去调用对应的create方法获取到stateDescriptor中的值。
Flink通过StateDescriptor来定义一个状态,这是一个抽象类,内部定义了状态名称、类型、序列化器等基础信息,与上面的状态对应,从StateDescriptor派生ValueStateDescriptor、ListStateDescriptor等等

  • ValueState getState(ValueStateDescriptor)
  • ReducingState getReducingState(ReducingStateDescriptor)
  • ListState getListState(ListStateDescriptor)
  • FoldingState getFoldingState(FoldingStateDescriptor)
  • MapState getMapState(MapStateDescriptot)

相关文章:

大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 目前已经更新到了&#xff1a; Hadoop&#xff08;已更完&#xff09;HDFS&#xff08;已更完&#xff09;MapReduce&#xff08;已更完&am…...

C++复习day04

一、函数重载 1.什么是函数重载&#xff1f; 自然语言中&#xff0c;一个词可以有多重含义&#xff0c;人们可以通过上下文来判断该词真实的含义&#xff0c;即该词被重 载了。 比如&#xff1a;以前有一个笑话&#xff0c;国有两个体育项目大家根本不用看&#xff0c;也不用…...

[苍穹外卖]-04菜品管理接口开发

效果预览 新增菜品 需求分析 查看产品原型分析需求, 包括用到哪些接口, 业务的限制规则 业务规则 菜品名称必须是唯一的菜品必须属于某个分类下, 不能单独存在新增菜品时可以根据情况选择菜品的口味每个菜品必须对应一张图片 接口设计 根据类型查询分类接口 文件上传接口 …...

gitlab 启动/关闭/启用开机启动/禁用开机启动

文章目录 启动 gitlab关闭 gitlab查看 gitlab 运行状态启用 gitlab 开机启动禁用 gitlab 开机启动GitlabGit启动 gitlab hxstrive@localhost:~$ sudo gitlab-ctl start ok: run: alertmanager: (pid 65953) 0s ok: run: gitaly: (pid 65965) 0s ok: run: gitlab-exporter: (pi…...

中间件解析漏洞(附环境搭建教程)

⼀&#xff1a;IIS解析漏洞 环境资源&#xff1a; https://download.csdn.net/download/Nai_zui_jiang/89717504 环境安装 windows2003iis6 1.创建新的虚拟机 2.在下⼀步中选择我们的iso⽂件镜像 vm已主动识别到windows2003 3.产品密钥⽹上搜⼀个 密码自己设置一个简单的&…...

matlab实现kaiser窗+时域采样序列(不管原信号拉伸成什么样子)是一样的,变到频谱后再采样就是一样的频域序列。

下图窗2的频谱在周期化的时候应该是2&#xff08;w-k*pi/T&#xff09;我直接对2w减得写错了 可见这两个kaiser窗频谱不一样&#xff0c;采样间隔为2T的窗&#xff0c;频谱压缩2倍&#xff0c;且以原采样频率的一半周期化。 但是这两个不同的kaiser窗在频域采样点的值使完全一…...

git为不同的项目设置不同的提交作者

方法1&#xff1a;找到项目的.git文件夹打开 打开config在下面添加自己作者信息 [user]name 作者名email 邮箱方法2&#xff1a;直接在.git文件夹设置作者名&#xff08;不使用–global参数&#xff09; git config user.name "xxxxx"如果想要修改之前提交的…...

防爆定位信标与防爆定位基站有什么区别?

新锐科技 https://baijiahao.baidu.com/s?id1804974957959442238&wfrspider&forpc http://www.xinruikc.cn/biaoqian/52.html http://www.xinruikc.cn/xinbiao/...

QT 编译报错:C3861: ‘tr‘ identifier not found

问题&#xff1a; QT 编译报错&#xff1a;C3861&#xff1a; ‘tr’ identifier not found 原因 使用tr的地方所在的类没有继承自 QObject 类 或者在不在某一类中&#xff0c; 解决方案 就直接用类名引用 &#xff1a;QObject::tr( )...

谈谈ES搜索引擎

一 ES的定义 ES 它的全称是 Elasticsearch&#xff0c;是一个建立在全文搜索引擎库Lucene基础上的一个开源搜索和分析引擎。ES 它本身具备分布式存储&#xff0c;检索速度快的特性&#xff0c;所以我们经常用它来实现全文检索功能。目前在 Elastic 官网对 ES 的定义&#xff0c…...

【MySQL】MySQL基础

目录 什么是数据库主流数据库基本使用MySQL的安装连接服务器服务器、数据库、表关系使用案例数据逻辑存储 MySQL的架构SQL分类什么是存储引擎 什么是数据库 mysql它是数据库服务的客户端mysqld它是数据库服务的服务器端mysql本质&#xff1a;基于C&#xff08;mysql&#xff09…...

Spring中Bean的相关注解

目录 1.Spring IoC&DI 2.关于Bean存储的相关注解(类注解与方法注解) Bean的获取方式 类注解和方法注解的重命名 2.1 类注解 2.1.1 Controller 2.1.2 Service 2.1.3 Repository 2.1.4 Component 2.1.5 Configuration 2.2 方法注解-Bean 2.2.1 定义多个对象 2.2…...

Golang | Leetcode Golang题解之第385题迷你语法分析器

题目&#xff1a; 题解&#xff1a; func deserialize(s string) *NestedInteger {if s[0] ! [ {num, _ : strconv.Atoi(s)ni : &NestedInteger{}ni.SetInteger(num)return ni}stack, num, negative : []*NestedInteger{}, 0, falsefor i, ch : range s {if ch - {negati…...

【Java 优选算法】双指针(上)

欢迎关注个人主页&#xff1a;逸狼 创造不易&#xff0c;可以点点赞吗~ 如有错误&#xff0c;欢迎指出~ 目录 移动零 分析 代码 复写零 分析 代码 快乐数 分析 代码 盛最多水的容器 分析 代码 移动零 题目链接 分析 双指针算法,利用两个指针cur和dest将数组划分为三个区间…...

【自动驾驶】控制算法(八)横向控制Ⅰ | 算法与流程

写在前面&#xff1a; &#x1f31f; 欢迎光临 清流君 的博客小天地&#xff0c;这里是我分享技术与心得的温馨角落。&#x1f4dd; 个人主页&#xff1a;清流君_CSDN博客&#xff0c;期待与您一同探索 移动机器人 领域的无限可能。 &#x1f50d; 本文系 清流君 原创之作&…...

Android SSE 单向接收数据

Server-Sent Events&#xff08;SSE&#xff09;是一种在客户端和服务器之间实现单向实时通信的技术。它允许服务器向客户端推送数据&#xff0c;但客户端无法使用 SSE 向服务器发送数据。这使得其适用于需要持续接收服务器数据的应用场景&#xff08;如实时通知、股票行情、社…...

排序《数据结构》

排序 《数据结构》 1.排序的概念及其运用1.1 排序的概念1.2 排序运用1.3常见的排序算法1.4 排序动图演示 2.常见排序算法的实现2.1 插入排序2.2希尔排序2.3 快排左边做keyi&#xff0c;右边先走&#xff0c;可以保证相遇位置比keyi小 2.4 快速排序优化快排&#xff08;非递归&a…...

flutter 提示框2 Dialog

flutter 提示框 写在点击的方法体中 child里放自己喜欢的 showDialog( context: context, builder: (BuildContext context) { final Dialog alertDialog Dialog( backgroundColor: Colors.transparent,shadowColor:Colors.transparent,child: Container(height: mediawi…...

如何选择SDR无线图传方案

在开源软件定义无线电&#xff08;SDR&#xff09;领域&#xff0c;有几个项目提供了无线图传的解决方案。以下是一些开源SDR无线图传方案&#xff1a; 1. **OpenHD**&#xff1a;这是一个远程高清数字图像传输的开源解决方案&#xff0c;它使用SDR技术来实现高清视频的无线传…...

关于Python类中方法__init__()解析

# import numpy as npclass Car():def __init__(self, maker, name, year):self.maker makerself.name nameself.year yearprint(self.searchMakrt() "123")def searchMakrt(self):print("汽车制作厂家为&#xff1a; " self.maker)# passreturn &quo…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...