当前位置: 首页 > news >正文

铁威马NAS教程之利用docker快速搭建个人在线书库

这是一个基于Calibre的简单的图书管理系统,支持在线阅读。主要特点是:美观的界面、支持多用户、支持在线阅读、支持邮件推送、支持OPDS、支持一键安装,网页版初始化配置,轻松启动网站等等。

那么,如何利用docker快速搭建个人在线书库,以铁威马F4-423为例。

1.首先创建好TaleBook文件夹。

 

2.登录铁威马TOS系统后,前往TOS 应用中心,找到Docker应用,然后点击“安装”。

 

3.单击桌面打开Docker,注册表,在搜索框中输入talebook,点击下载。

 

4.下载完成后,选中下载好的镜像,点击启动。

 

5.设置容器名称,设置资源限制,是否开机自动启动,点击下一步。

 

6.设置卷,路径选择刚刚创建的文件夹,点击下一步。

 

7.设置端口,点击下一步(本地端口可以自定义,只要不和其他端口冲突就行,如需外网访问,需将这个端口在路由器上做好转发)。

 

8.一直下一步,确认完成。

 

9.可以在容器界面查看。

 

10.设置完docker镜像后,就可以通过网页来访问媒体服务器了,访问地址是铁威马IP+docker容器的本地端口。

 

11.设置网站标题、用户名、密码、邮箱,,完成填写后,点击完成设置。

 

12.右上角登录。

 

13.进入首页。

 

14.将你的书箱上传到此前NAS中建立的文件夹Docker/Talebook,找到books/imports目录,上传成功后,在网页左上角找到管理,并进入导入图书页面,点击扫描书籍。

 

15.勾选需要上传的书籍,导入书架。

 

16.回到首页就可以看到了,你可以点击文档上线阅读。

 

相关文章:

铁威马NAS教程之利用docker快速搭建个人在线书库

这是一个基于Calibre的简单的图书管理系统,支持在线阅读。主要特点是:美观的界面、支持多用户、支持在线阅读、支持邮件推送、支持OPDS、支持一键安装,网页版初始化配置,轻松启动网站等等。 那么,如何利用docker快速搭…...

504. 七进制数——【Leetcode每日一题】

504. 七进制数 给定一个整数 num&#xff0c;将其转化为 7 进制&#xff0c;并以字符串形式输出。 示例 1: 输入: num 100 输出: “202” 示例 2: 输入: num -7 输出: “-10” 提示&#xff1a; −107<num<107-10^7 < num < 10^7−107<num<107 思路&…...

RocketMQ源码(24)—DefaultMQPushConsumer延迟消息源码

基于RocketMQ release-4.9.3&#xff0c;深入的介绍了DefaultMQPushConsumer延迟消息源码。 文章目录1 load加载延迟消息数据1.1 parseDelayLevel解析延迟等级2 start启动调度消息服务3 DeliverDelayedMessageTimerTask投递延迟消息任务3.1 executeOnTimeup执行延迟消息投递3.2…...

计算机视觉知识点(一)——交并比(IoU)及其若干改进

交并比&#xff08;IoU&#xff09;前言IoU公式及示意图IoU Loss缺点GIoU Loss公式及示意图缺点DIoU公式及示意图CIoU前言 目标检测是一个常见的计算机视觉任务&#xff0c;在目标检测任务中&#xff0c;交并比作为评判检测框的标准具有很重要的意义&#xff0c;在实际的应用中…...

一篇文章教你从零到一搭建自动化测试框架(附视频教程+源码)

目录 前言 1. 什么是自动化测试框架&#xff1f; 2. 没有万能的测试框架&#xff0c;适合自己项目的&#xff0c;能提高工作效率的就是好框架。 3. 设计框架的思路&#xff1a; 4.如何开展自动化测试 前言 关于测试框架的好处&#xff0c;比如快速回归提高测试效率&#x…...

【备战蓝桥杯】----01背包问题(动态规划)

&#x1f339;作者:云小逸 &#x1f4dd;个人主页:云小逸的主页 &#x1f4dd;Github:云小逸的Github &#x1f91f;motto:要敢于一个人默默的面对自己&#xff0c;强大自己才是核心。不要等到什么都没有了&#xff0c;才下定决心去做。种一颗树&#xff0c;最好的时间是十年前…...

Golang1.18新特性介绍——泛型

社区长期高呼的泛型特性在Golang 1.18中终于正式发布&#xff0c;Go泛型实现与传统的C有较大差异&#xff0c;更像Rust的泛型实现。本文详细介绍Golang泛型及其特性&#xff0c;包括泛型语法、类型参数、类型约束、类型近似以及constraints包提供内置类型等。 最近写Dao代码&am…...

【SpringBoot17】SpringBoot中使用Quartz管理定时任务

定时任务在系统中用到的地方很多&#xff0c;例如每晚凌晨的数据备份&#xff0c;每小时获取第三方平台的 Token 信息等等&#xff0c;之前我们都是在项目中规定这个定时任务什么时候启动&#xff0c;到时间了便会自己启动&#xff0c;那么我们想要停止这个定时任务的时候&…...

杨辉三角形 (蓝桥杯) JAVA

目录题目描述&#xff1a;暴力破解&#xff08;四成&#xff09;&#xff1a;二分法破解&#xff08;满分&#xff09;&#xff1a;题目描述&#xff1a; 下面的图形是著名的杨辉三角形&#xff1a; 如果我们按从上到下、从左到右的顺序把所有数排成一列&#xff0c;可以得到如…...

AI制药 - AlphaFold Multimer 的 MSA Pairing 源码

目前最新版本是v2.3.1&#xff0c;2023.1.12 AlphaFold multimer v1 于 2021 年 7 月发布&#xff0c;同时发表了一篇描述其方法和结果的论文。AlphaFold multimer v1 使用了与 AlphaFold 单体相同的模型结构和训练方法&#xff0c;但增加了一些特征和损失函数来处理多条链。Al…...

TitanIDE:云原生开发到底强在哪里?

原文作者&#xff1a;行云创新技术总监 邓冰寒 引言 是一种新的软件开发方法&#xff0c;旨在构建更可靠、高效、弹性、安全和可扩展的应用程序。与传统的应用程序开发方式不同&#xff0c;云原生是将开发环境完全搬到云端&#xff0c;构建一站式的云原生开发环境。云原生的开…...

单片机常用完整性校验算法

一、前言 单片机在开发过程中经常会遇到大文件传输&#xff0c;或者大量数据传输&#xff0c;在一些工业环境下&#xff0c;数据传输并不是很稳定&#xff0c;如何检验数据的完整性就是个问题&#xff0c;这里简单介绍一下单片机常用的几种数据完整性校验方法。 二、CheckSum校…...

Anaconda 的安装配置及依赖项的内外网配置

在分享anaconda 的安装配置及使用前&#xff0c;我们必须先明白anaconda是什么&#xff1b;Anaconda是一个开源的Python发行版本。两者区别在于前者是一门编程语言&#xff0c;后者相当于编程语言中的工具包。 由于python自身缺少numpy、matplotlib、scipy、scikit-learn等一系…...

p84 CTF夺旗-PHP弱类型异或取反序列化RCE

数据来源 文章参考 本课重点&#xff1a; 案例1&#xff1a;PHP-相关总结知识点-后期复现案例2&#xff1a;PHP-弱类型对比绕过测试-常考点案例3&#xff1a;PHP-正则preg_match绕过-常考点案例4&#xff1a;PHP-命令执行RCE变异绕过-常考点案例5&#xff1a;PHP-反序列化考题…...

2022财报逆转,有赞穿透迷雾实现突破

2022年&#xff0c;商家经营面临困难。但在一些第三方服务商的帮助下&#xff0c;也有商家取得了逆势增长。 2023年3月23日&#xff0c;有赞发布2022年业绩报告&#xff0c;它帮助许多商家稳住了一整年的经营。2022年&#xff0c;有赞门店SaaS业务的GMV达到425亿元&#xff0c…...

蓝桥杯 - 求组合数【C(a,b)】+ 卡特兰数

文章目录&#x1f4ac;前言885. 求组合数 I C(m,n) 【dp】886 求组合数 II 【数据大小10万级别】 【费马小定理快速幂逆元】887. 求组合数 III 【le18级别】 【卢卡斯定理 逆元 快速幂 】888.求组合数 IV 【没有%p -- 高精度算出准确结果】 【分解质因数 高精度乘法 --只用一…...

膳食真菌在癌症免疫治疗中的作用: 从肠道微生物群的角度

谷禾健康 癌症是一种恶性肿瘤&#xff0c;它可以发生在人体的任何部位&#xff0c;包括肺、乳房、结肠、胃、肝、宫颈等。根据世界卫生组织的数据&#xff0c;全球每年有超过1800万人被诊断出患有癌症&#xff0c;其中约有1000万人死于癌症。癌症已成为全球范围内的主要健康问题…...

怎么将模糊的照片变清晰

怎么将模糊的照片变清晰?珍贵的照片每个人都会有&#xff0c;而遇到珍贵的照片变模糊了&#xff0c;相信会让人很苦恼的。那么有没有办法可以解决呢?答案是有的&#xff0c;我们可以用工具让模糊的照片变得清晰。下面就来分享一些让模糊的照片变清晰的方法&#xff0c;有兴趣…...

【软件测试】基础知识第一篇

文章目录一. 什么是软件测试二. 测试和调试的区别三. 什么是测试用例四. 软件的生命周期五. 软件测试的生命周期一. 什么是软件测试 软件测试就是验证软件产品特性是否满足用户的需求。 那需求又是什么呢&#xff1f;在多数软件公司&#xff0c;会有两种需求&#xff0c;一种…...

【百面成神】java web基础7问,你能坚持到第几问

前 言 &#x1f349; 作者简介&#xff1a;半旧518&#xff0c;长跑型选手&#xff0c;立志坚持写10年博客&#xff0c;专注于java后端 ☕专栏简介&#xff1a;纯手打总结面试题&#xff0c;自用备用 &#x1f330; 文章简介&#xff1a;java web最基础、重要的8道面试题 文章目…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

Modbus RTU与Modbus TCP详解指南

目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...