当前位置: 首页 > news >正文

【stata】自写命令分享dynamic_est,一键生成dynamic effect

1. 命令简介

dynamic_est 是一个用于可视化动态效应(dynamic effect)的工具。它特别适用于事件研究(event study)或双重差分(Difference-in-Differences, DID)分析。通过一句命令即可展示动态效应,帮助用户更好地理解在某变量的作用下,随时间变化其对结果变量的影响。

在输出的图像中,为了让结果更加直观,我加入了各期的系数、标准误,也标注了显著性

fig1
这个命令最早是我用来checkdata的,后来为了方便就写成了函数。现在我稍微完善了一下,封装成了stata外部命令,能够实现一句命令查看被解释变量变量在treat下的dynamic effect,希望能帮到大家。

2.使用方法

(1) 主要选项

dynamic_est 需要以下四个必需变量:

  • y: 结果变量(outcome variable),即你想要观察的因变量。
  • treat: 分组变量
    • 可以是二元变量,用于区分处理组(treatment group)或对照组(control group)
    • 也支持强度(intensity)变量
  • time: 时间变量
    • 支持自然年份(standard-spec.)
    • 相对年份(staggered-spec.)
  • ref: 基期选择,数值型,如{2006} 或 {-1},用于定义参考时期。

(2) 其他选项

除了以上的必需变量,dynamic_est 还支持以下可选参数:

  • absorb(string): 可吸收的固定效应或控制变量
  • cluster(varlist): 聚类变量,用于调整标准误
  • cov(string): 模型中要包含的协变量
  • level(string): 置信区间水平,默认为90%,可选值为909599
  • regtype(string): 回归类型,可选择reg(默认的OLS)或ppml(泊松伪极大似然估计)
  • figname(string): 输出图形的文件名
  • figtitle(string): 图形的标题
  • figsubtitle(string): 图形的副标题

3.安装方法

net install dynamic_est, from("https://mengke25.github.io/files/function/stata/dynamic_est") replace

如果安装失败,可通过邮件向我索取。因为是自用命令,可能还有很多不完善的地方,所以先暂时上传到了个人的repositories中,如果大家有什么建议或者问题,欢迎私信我!

allenmeng97@gmail.com

uibemk@126.com

4.示例

(1) 基本用法

standard-spec.
dynamic_est lnv , treat(treat) time(year) ref(2009) 
staggered-spec.
dynamic_est lnv , treat(treat) time(t) ref(-1) 

(2) 进阶用法

dynamic_est lnv , treat(treat_intens) time(year) ref(2009) absorb(id year) cluster(id) regtype(reg)

(3) 帮助文件

help

5.写在最后

需要补充说明的是,dynamic effect并不完全等同于DID中的平行趋势检验。
上文所谓的standard-spec和staggered-spec是为了区分数据的范式

  • 在standard-spec情形下,time是自然时间,此时dynamic effect结果可以被看做平行趋势检验结果。在这种请跨国下,以下两组代码等价:
ppmlhdfe Active i(2016/2019).year#i1.Tr_cate if year>=2015 , /// 
a(id_cate#country_j year#country_j) cluster(country_j) 
dynamic_est Active if year>=2015,treat(Tr_cate) time(year) ref(2015) /// 
absorb(id_cate#country_j year#country_j) cluster(country_j) regtype(ppml)
  • 在standard-spec情形下,
    • 不能直接用dynamic_est去直接对类似多时点的数据进行分析。
    • 需要先对panel进行处理,例如像Sun Abraham、callaway santanna等(或者用panelmatch的方法)对panel进行重组,才能进行分析。
    • 不过,我写的另一个外部命令(欢迎使用)twfe_stgdid可以直接对staggered-spec的数据进行分析。

转载请注明出处@mengke25

请喝咖啡打赏渠道

相关文章:

【stata】自写命令分享dynamic_est,一键生成dynamic effect

1. 命令简介 dynamic_est 是一个用于可视化动态效应(dynamic effect)的工具。它特别适用于事件研究(event study)或双重差分(Difference-in-Differences, DID)分析。通过一句命令即可展示动态效应&#xf…...

文心一言 VS 讯飞星火 VS chatgpt (342)-- 算法导论23.2 1题

一、对于同一个输入图,Kruskal算法返回的最小生成树可以不同。这种不同来源于对边进行排序时,对权重相同的边进行的不同处理。证明:对于图G的每棵最小生成树T,都存在一种办法来对G的边进行排序,使得Kruskal算法所返回的…...

部署若依Spring boot项目

nohup和& nohup命令解释 nohup命令:nohup 是 no hang up 的缩写,就是不挂断的意思,但没有后台运行,终端不能标准输入。 nohup :不挂断的运行,注意并没有后台运行的功能,就是指,用nohup运行命令可以使命令永久的执行下去,和用户终端没有关系,注意了nohup没有后台…...

oc打包:权限弹窗无法正常弹出

在遇到编写了权限无法弹出弹窗时,需要查看是不是调用时机不对,这里直接教万能改法。 将权限获取方法编写在applicationDidBecomeActive 进入前台的生命周期接口中,如下: if (@available(iOS 14, *)) {NSLog<...

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中&#xff0c;异步编程和事件驱动的架构变得越来越重要。RxJava&#xff0c;作为响应式编程&#xff08;Reactive Programming&#xff09;的一个流行库&#xff0c;为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJ…...

Maven 依赖漏洞扫描检查插件 dependency-check-maven 的使用

前言 在现代软件开发中&#xff0c;开源库的使用愈加普遍&#xff0c;然而这些开源库中的漏洞往往会成为潜在的安全风险。如何及时的发现依赖的第三方库是否存在漏洞&#xff0c;就变成很重要了。 本文向大家推荐一款可以进行依赖包漏洞检查的 maven 插件 dependency-check-m…...

2. 下载rknn-toolkit2项目

官网链接&#xff1a; https://github.com/airockchip/rknn-toolkit2 安装好git&#xff1a;[[1. Git的安装]] 下载项目&#xff1a; git clone https://github.com/airockchip/rknn-toolkit2.git或者直接去github下载压缩文件&#xff0c;解压即可。...

xhr、ajax、axois、fetch的区别

一、XMLHttpRequest (XHR)、AJAX、Axios 和 Fetch API 都是用于在不重新加载整个页面的情况下与服务器进行通信的技术和库。它们在处理超时、终止请求、进度反馈等机制上有一些显著的差异。以下是它们的详细比较&#xff1a; 1. XMLHttpRequest (XHR) XMLHttpRequest 是一种浏…...

【HuggingFace Transformers】OpenAIGPTModel源码解析

OpenAIGPTModel源码解析 1. GPT 介绍2. OpenAIGPTModel类 源码解析 说到ChatGPT&#xff0c;大家可能都使用过吧。2022年&#xff0c;ChatGPT的推出引发了广泛的关注和讨论。这款对话生成模型不仅具备了强大的语言理解和生成能力&#xff0c;还能进行非常自然的对话&#xff0c…...

macOS安装Java和Maven

安装Java Java Downloads | Oracle 官网下载默认说最新的Java22版本&#xff0c;注意这里我们要下载的是Java8&#xff0c;对应的JDK1.8 需要登陆Oracle&#xff0c;没有账号的可以百度下。账号:908344069qq.com 密码:Java_2024 Java8 jdk1.8配置环境变量 open -e ~/.bash_p…...

SpringBoot教程(安装篇) | Elasticsearch的安装

SpringBoot教程&#xff08;安装篇&#xff09; | Elasticsearch的安装 一、确定Elasticsearch版本二、下载elasticsearch&#xff08;windows版本&#xff09;官网下载如何解压配置 允许 别人跨域 访问自己启动运行 三、Es可视化工具安装&#xff08;elasticsearch-head&#…...

前端登录鉴权——以若依Ruoyi前后端分离项目为例解读

权限模型 Ruoyi框架学习——权限管理_若依框架权限-CSDN博客 用户-角色-菜单&#xff08;User-Role-Menu&#xff09;模型是一种常用于权限管理的设计模式&#xff0c;用于实现系统中的用户权限控制。该模型主要包含以下几个要素&#xff1a; 用户&#xff08;User&#xff09;…...

【Tools】大模型中的自注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样 &#x1f3b5; 方芳《摇太阳》 自注意力机制&#xff08;Self-Attention&#xff09;是一…...

PhotoZoom Classic 9软件新功能特性及安装激活图文教程

PhotoZoom Classic 9这款软件能够对数码图片进行放大&#xff0c;而且放大后的图片没有任何的品质的损坏&#xff0c;没有锯齿&#xff0c;不会失真&#xff0c;如果您有兴趣的话可以试试哦&#xff01; PhotoZoom Classic 9软件新功能特性 通过屡获殊荣的 S-Spline XL 插值…...

【数据结构】直接插入排序

目录 一、基本思想 二、动图演示 三、思路分析 四、代码实现 五、易错提醒 六、时间复杂度分析 一、基本思想 直接插入排序&#xff08;Straight Insertion Sort&#xff09;是一种简单直观的排序算法&#xff0c;其基本思想是&#xff1a; 把待排序的一个记录按其关键码…...

JavaScript 实现虚拟滚动技术

虚拟滚动 虚拟滚动&#xff08;有时称为 虚拟列表、虚拟滚动条&#xff09;是 JavaScript 中的一种技术&#xff0c;旨在优化大数据量的列表渲染&#xff0c;尤其是当有成千上万的数据项时&#xff0c;直接渲染整个列表会导致性能问题。虚拟列表通过只渲染用户视口中可见的那一…...

【重学 MySQL】十八、逻辑运算符的使用

【重学 MySQL】十八、逻辑运算符的使用 AND运算符OR运算符NOT运算符异或运算符使用 XOR 关键字使用 BIT_XOR() 函数注意事项 注意事项 在MySQL中&#xff0c;逻辑运算符是构建复杂查询语句的重要工具&#xff0c;它们用于处理布尔类型的数据&#xff0c;进行逻辑判断和组合条件…...

关于 QImage原始数据格式与cv::Mat原始数据进行手码数据转换 的解决方法

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/141996117 长沙红胖子Qt&#xff08;长沙创微智科&#xff09;博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV…...

前端WebSocket客户端实现

// 创建WebSocket连接 var socket new WebSocket(ws://your-spring-boot-server-url/websocket-endpoint);// 连接打开时触发 socket.addEventListener(open, function (event) {socket.send(JSON.stringify({type: JOIN, room: general})); });// 监听从服务器来的消息 socke…...

读取realsense d455双目及imu

问题定义 实时读取realsense数据喂给slam系统 代码 /** rs_d455设备 */#include <librealsense2/rs.hpp> #include <iostream>#include "rs_common_device.h"// opencv #include <opencv2/opencv.hpp>class RsD455Device: public rsCmmonDevice…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...