当前位置: 首页 > news >正文

〖open-mmlab: MMDetection〗解析文件:configs/_base_/schedules

详细解析三个训练调度文件:schedule_1x.py、schedule_2x.py、schedule_20e.py

在深度学习模型训练过程中,训练调度(Training Schedule)是至关重要的,它决定了模型训练过程中学习率(Learning Rate, LR)的变化以及训练的总轮数(Epochs)。本文将详细解析三个训练调度文件:schedule_1x.pyschedule_2x.pyschedule_20e.py,这三个文件分别对应不同的训练时长和策略。

区别

这三个文件的主要区别在于训练的总轮数(max_epochs)和学习率调度策略(param_scheduler)中的milestones参数。max_epochs决定了训练的总轮数,而milestones参数则定义了在哪些epoch时学习率会进行衰减。

  • schedule_1x.py:训练总轮数为12轮,学习率在第8轮和第11轮时衰减。
  • schedule_2x.py:训练总轮数为24轮,学习率在第16轮和第22轮时衰减。
  • schedule_20e.py:训练总轮数为20轮,学习率在第16轮和第19轮时衰减。

schedule_1x.py 解析

# training schedule for 1x
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')# learning rate
param_scheduler = [dict(type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),dict(type='MultiStepLR',begin=0,end=12,by_epoch=True,milestones=[8, 11],gamma=0.1)
]# optimizer
optim_wrapper = dict(type='OptimWrapper',optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))# Default setting for scaling LR automatically
#   - `enable` means enable scaling LR automatically
#       or not by default.
#   - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)

训练配置(train_cfg

  • type: 'EpochBasedTrainLoop',表示训练循环是基于epoch的。
  • max_epochs: 12,训练的总轮数为12轮。
  • val_interval: 1,表示每1轮进行一次验证。

验证和测试配置(val_cfgtest_cfg

  • 两者都设置为默认的循环配置。

学习率调度(param_scheduler

  • 首先使用LinearLR,从0开始线性增加到start_factor=0.001,直到end=500迭代。
  • 然后使用MultiStepLR,在第8轮和第11轮时,学习率乘以gamma=0.1进行衰减。

优化器配置(optim_wrapper

  • 使用SGD作为优化器,初始学习率为0.02,动量为0.9,权重衰减为0.0001

自动缩放学习率(auto_scale_lr

  • enable: False,表示不自动缩放学习率。
  • base_batch_size: 16,基础批量大小。

schedule_2x.py 解析

# training schedule for 2x
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=24, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')# learning rate
param_scheduler = [dict(type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),dict(type='MultiStepLR',begin=0,end=24,by_epoch=True,milestones=[16, 22],gamma=0.1)
]# optimizer
optim_wrapper = dict(type='OptimWrapper',optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))# Default setting for scaling LR automatically
#   - `enable` means enable scaling LR automatically
#       or not by default.
#   - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)

训练配置(train_cfg

  • max_epochs: 24,训练的总轮数为24轮。

学习率调度(param_scheduler

  • 使用MultiStepLR,在第16轮和第22轮时,学习率乘以gamma=0.1进行衰减。

schedule_20e.py 解析

# training schedule for 20e
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=20, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')# learning rate
param_scheduler = [dict(type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),dict(type='MultiStepLR',begin=0,end=20,by_epoch=True,milestones=[16, 19],gamma=0.1)
]# optimizer
optim_wrapper = dict(type='OptimWrapper',optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))# Default setting for scaling LR automatically
#   - `enable` means enable scaling LR automatically
#       or not by default.
#   - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)

训练配置(train_cfg

  • max_epochs: 20,训练的总轮数为20轮。

学习率调度(param_scheduler

  • 使用MultiStepLR,在第16轮和第19轮时,学习率乘以gamma=0.1进行衰减。

总结

这三个训练调度文件主要区别在于训练的总轮数和学习率衰减的时机。通过调整这些参数,可以控制模型的训练过程,以达到更好的训练效果。在实际应用中,根据模型的复杂度和训练数据的量,可以灵活选择或调整这些参数。

相关文章:

〖open-mmlab: MMDetection〗解析文件:configs/_base_/schedules

详细解析三个训练调度文件:schedule_1x.py、schedule_2x.py、schedule_20e.py 在深度学习模型训练过程中,训练调度(Training Schedule)是至关重要的,它决定了模型训练过程中学习率(Learning Rate, LR&…...

Android之Handler是如何保证延迟发送的

目录 核心组件延迟发送消息的工作原理具体步骤1. 创建 Handler:2.发送延迟消息3.消息入队列4.消息出队和处理: 关键点总结 在 Android 中,Handler 是用于在不同线程之间传递和处理消息的工具。它可以用于定时任务、延迟执行任务等。Handler 如何保证延迟发送消息的核…...

定位信标、基站、标签,定位信标是什么

定位信标、基站、标签,定位信标是什么 今天给各位分享定位信标、基站、标签的知识,其中也会对定位信标是什么进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧! 怎样做人员定位啊? 〖…...

2024国赛数学建模B题完整分析参考论文38页(含模型和可运行代码)

2024 高教社杯全国大学生数学建模完整分析参考论文 B 题 生产过程中的决策问题 目录 摘要 一、问题重述 二、问题分析 三、 模型假设 四、 模型建立与求解 4.1问题1 4.1.1问题1思路分析 4.1.2问题1模型建立 4.1.3问题1样例代码(仅供参考) 4.…...

Hive是什么?

Apache Hive 是一个基于 Hadoop 的数据仓库工具,用于在 Hadoop 分布式文件系统(HDFS)上管理和查询大规模结构化数据集。Hive 提供了一个类似 SQL 的查询语言,称为 HiveQL,通过这种语言可以在 HDFS 上执行 MapReduce 作…...

计算机网络:http协议

计算机网络:http协议 一、本文内容与前置知识点1. 本文内容2. 前置知识点 二、HTTP协议工作简介1. 特点2. 传输时间分析3. http报文结构 三、HTTP版本迭代1. HTTP1.0和HTTP1.1主要区别2. HTTP1.1和HTTP2主要区别3. HTTPS与HTTP的主要区别 四、参考文献 一、本文内容…...

【stata】自写命令分享dynamic_est,一键生成dynamic effect

1. 命令简介 dynamic_est 是一个用于可视化动态效应(dynamic effect)的工具。它特别适用于事件研究(event study)或双重差分(Difference-in-Differences, DID)分析。通过一句命令即可展示动态效应&#xf…...

文心一言 VS 讯飞星火 VS chatgpt (342)-- 算法导论23.2 1题

一、对于同一个输入图,Kruskal算法返回的最小生成树可以不同。这种不同来源于对边进行排序时,对权重相同的边进行的不同处理。证明:对于图G的每棵最小生成树T,都存在一种办法来对G的边进行排序,使得Kruskal算法所返回的…...

部署若依Spring boot项目

nohup和& nohup命令解释 nohup命令:nohup 是 no hang up 的缩写,就是不挂断的意思,但没有后台运行,终端不能标准输入。 nohup :不挂断的运行,注意并没有后台运行的功能,就是指,用nohup运行命令可以使命令永久的执行下去,和用户终端没有关系,注意了nohup没有后台…...

oc打包:权限弹窗无法正常弹出

在遇到编写了权限无法弹出弹窗时,需要查看是不是调用时机不对,这里直接教万能改法。 将权限获取方法编写在applicationDidBecomeActive 进入前台的生命周期接口中,如下: if (@available(iOS 14, *)) {NSLog<...

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中&#xff0c;异步编程和事件驱动的架构变得越来越重要。RxJava&#xff0c;作为响应式编程&#xff08;Reactive Programming&#xff09;的一个流行库&#xff0c;为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJ…...

Maven 依赖漏洞扫描检查插件 dependency-check-maven 的使用

前言 在现代软件开发中&#xff0c;开源库的使用愈加普遍&#xff0c;然而这些开源库中的漏洞往往会成为潜在的安全风险。如何及时的发现依赖的第三方库是否存在漏洞&#xff0c;就变成很重要了。 本文向大家推荐一款可以进行依赖包漏洞检查的 maven 插件 dependency-check-m…...

2. 下载rknn-toolkit2项目

官网链接&#xff1a; https://github.com/airockchip/rknn-toolkit2 安装好git&#xff1a;[[1. Git的安装]] 下载项目&#xff1a; git clone https://github.com/airockchip/rknn-toolkit2.git或者直接去github下载压缩文件&#xff0c;解压即可。...

xhr、ajax、axois、fetch的区别

一、XMLHttpRequest (XHR)、AJAX、Axios 和 Fetch API 都是用于在不重新加载整个页面的情况下与服务器进行通信的技术和库。它们在处理超时、终止请求、进度反馈等机制上有一些显著的差异。以下是它们的详细比较&#xff1a; 1. XMLHttpRequest (XHR) XMLHttpRequest 是一种浏…...

【HuggingFace Transformers】OpenAIGPTModel源码解析

OpenAIGPTModel源码解析 1. GPT 介绍2. OpenAIGPTModel类 源码解析 说到ChatGPT&#xff0c;大家可能都使用过吧。2022年&#xff0c;ChatGPT的推出引发了广泛的关注和讨论。这款对话生成模型不仅具备了强大的语言理解和生成能力&#xff0c;还能进行非常自然的对话&#xff0c…...

macOS安装Java和Maven

安装Java Java Downloads | Oracle 官网下载默认说最新的Java22版本&#xff0c;注意这里我们要下载的是Java8&#xff0c;对应的JDK1.8 需要登陆Oracle&#xff0c;没有账号的可以百度下。账号:908344069qq.com 密码:Java_2024 Java8 jdk1.8配置环境变量 open -e ~/.bash_p…...

SpringBoot教程(安装篇) | Elasticsearch的安装

SpringBoot教程&#xff08;安装篇&#xff09; | Elasticsearch的安装 一、确定Elasticsearch版本二、下载elasticsearch&#xff08;windows版本&#xff09;官网下载如何解压配置 允许 别人跨域 访问自己启动运行 三、Es可视化工具安装&#xff08;elasticsearch-head&#…...

前端登录鉴权——以若依Ruoyi前后端分离项目为例解读

权限模型 Ruoyi框架学习——权限管理_若依框架权限-CSDN博客 用户-角色-菜单&#xff08;User-Role-Menu&#xff09;模型是一种常用于权限管理的设计模式&#xff0c;用于实现系统中的用户权限控制。该模型主要包含以下几个要素&#xff1a; 用户&#xff08;User&#xff09;…...

【Tools】大模型中的自注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样 &#x1f3b5; 方芳《摇太阳》 自注意力机制&#xff08;Self-Attention&#xff09;是一…...

PhotoZoom Classic 9软件新功能特性及安装激活图文教程

PhotoZoom Classic 9这款软件能够对数码图片进行放大&#xff0c;而且放大后的图片没有任何的品质的损坏&#xff0c;没有锯齿&#xff0c;不会失真&#xff0c;如果您有兴趣的话可以试试哦&#xff01; PhotoZoom Classic 9软件新功能特性 通过屡获殊荣的 S-Spline XL 插值…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...

【C++】纯虚函数类外可以写实现吗?

1. 答案 先说答案&#xff0c;可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...

Python 高级应用10:在python 大型项目中 FastAPI 和 Django 的相互配合

无论是python&#xff0c;或者java 的大型项目中&#xff0c;都会涉及到 自身平台微服务之间的相互调用&#xff0c;以及和第三发平台的 接口对接&#xff0c;那在python 中是怎么实现的呢&#xff1f; 在 Python Web 开发中&#xff0c;FastAPI 和 Django 是两个重要但定位不…...

手动给中文分词和 直接用神经网络RNN做有什么区别

手动分词和基于神经网络&#xff08;如 RNN&#xff09;的自动分词在原理、实现方式和效果上有显著差异&#xff0c;以下是核心对比&#xff1a; 1. 实现原理对比 对比维度手动分词&#xff08;规则 / 词典驱动&#xff09;神经网络 RNN 分词&#xff08;数据驱动&#xff09…...

Docker、Wsl 打包迁移环境

电脑需要开启wsl2 可以使用wsl -v 查看当前的版本 wsl -v WSL 版本&#xff1a; 2.2.4.0 内核版本&#xff1a; 5.15.153.1-2 WSLg 版本&#xff1a; 1.0.61 MSRDC 版本&#xff1a; 1.2.5326 Direct3D 版本&#xff1a; 1.611.1-81528511 DXCore 版本&#xff1a; 10.0.2609…...