当前位置: 首页 > news >正文

〖open-mmlab: MMDetection〗解析文件:configs/_base_/schedules

详细解析三个训练调度文件:schedule_1x.py、schedule_2x.py、schedule_20e.py

在深度学习模型训练过程中,训练调度(Training Schedule)是至关重要的,它决定了模型训练过程中学习率(Learning Rate, LR)的变化以及训练的总轮数(Epochs)。本文将详细解析三个训练调度文件:schedule_1x.pyschedule_2x.pyschedule_20e.py,这三个文件分别对应不同的训练时长和策略。

区别

这三个文件的主要区别在于训练的总轮数(max_epochs)和学习率调度策略(param_scheduler)中的milestones参数。max_epochs决定了训练的总轮数,而milestones参数则定义了在哪些epoch时学习率会进行衰减。

  • schedule_1x.py:训练总轮数为12轮,学习率在第8轮和第11轮时衰减。
  • schedule_2x.py:训练总轮数为24轮,学习率在第16轮和第22轮时衰减。
  • schedule_20e.py:训练总轮数为20轮,学习率在第16轮和第19轮时衰减。

schedule_1x.py 解析

# training schedule for 1x
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')# learning rate
param_scheduler = [dict(type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),dict(type='MultiStepLR',begin=0,end=12,by_epoch=True,milestones=[8, 11],gamma=0.1)
]# optimizer
optim_wrapper = dict(type='OptimWrapper',optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))# Default setting for scaling LR automatically
#   - `enable` means enable scaling LR automatically
#       or not by default.
#   - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)

训练配置(train_cfg

  • type: 'EpochBasedTrainLoop',表示训练循环是基于epoch的。
  • max_epochs: 12,训练的总轮数为12轮。
  • val_interval: 1,表示每1轮进行一次验证。

验证和测试配置(val_cfgtest_cfg

  • 两者都设置为默认的循环配置。

学习率调度(param_scheduler

  • 首先使用LinearLR,从0开始线性增加到start_factor=0.001,直到end=500迭代。
  • 然后使用MultiStepLR,在第8轮和第11轮时,学习率乘以gamma=0.1进行衰减。

优化器配置(optim_wrapper

  • 使用SGD作为优化器,初始学习率为0.02,动量为0.9,权重衰减为0.0001

自动缩放学习率(auto_scale_lr

  • enable: False,表示不自动缩放学习率。
  • base_batch_size: 16,基础批量大小。

schedule_2x.py 解析

# training schedule for 2x
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=24, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')# learning rate
param_scheduler = [dict(type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),dict(type='MultiStepLR',begin=0,end=24,by_epoch=True,milestones=[16, 22],gamma=0.1)
]# optimizer
optim_wrapper = dict(type='OptimWrapper',optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))# Default setting for scaling LR automatically
#   - `enable` means enable scaling LR automatically
#       or not by default.
#   - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)

训练配置(train_cfg

  • max_epochs: 24,训练的总轮数为24轮。

学习率调度(param_scheduler

  • 使用MultiStepLR,在第16轮和第22轮时,学习率乘以gamma=0.1进行衰减。

schedule_20e.py 解析

# training schedule for 20e
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=20, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')# learning rate
param_scheduler = [dict(type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),dict(type='MultiStepLR',begin=0,end=20,by_epoch=True,milestones=[16, 19],gamma=0.1)
]# optimizer
optim_wrapper = dict(type='OptimWrapper',optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))# Default setting for scaling LR automatically
#   - `enable` means enable scaling LR automatically
#       or not by default.
#   - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)

训练配置(train_cfg

  • max_epochs: 20,训练的总轮数为20轮。

学习率调度(param_scheduler

  • 使用MultiStepLR,在第16轮和第19轮时,学习率乘以gamma=0.1进行衰减。

总结

这三个训练调度文件主要区别在于训练的总轮数和学习率衰减的时机。通过调整这些参数,可以控制模型的训练过程,以达到更好的训练效果。在实际应用中,根据模型的复杂度和训练数据的量,可以灵活选择或调整这些参数。

相关文章:

〖open-mmlab: MMDetection〗解析文件:configs/_base_/schedules

详细解析三个训练调度文件:schedule_1x.py、schedule_2x.py、schedule_20e.py 在深度学习模型训练过程中,训练调度(Training Schedule)是至关重要的,它决定了模型训练过程中学习率(Learning Rate, LR&…...

Android之Handler是如何保证延迟发送的

目录 核心组件延迟发送消息的工作原理具体步骤1. 创建 Handler:2.发送延迟消息3.消息入队列4.消息出队和处理: 关键点总结 在 Android 中,Handler 是用于在不同线程之间传递和处理消息的工具。它可以用于定时任务、延迟执行任务等。Handler 如何保证延迟发送消息的核…...

定位信标、基站、标签,定位信标是什么

定位信标、基站、标签,定位信标是什么 今天给各位分享定位信标、基站、标签的知识,其中也会对定位信标是什么进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧! 怎样做人员定位啊? 〖…...

2024国赛数学建模B题完整分析参考论文38页(含模型和可运行代码)

2024 高教社杯全国大学生数学建模完整分析参考论文 B 题 生产过程中的决策问题 目录 摘要 一、问题重述 二、问题分析 三、 模型假设 四、 模型建立与求解 4.1问题1 4.1.1问题1思路分析 4.1.2问题1模型建立 4.1.3问题1样例代码(仅供参考) 4.…...

Hive是什么?

Apache Hive 是一个基于 Hadoop 的数据仓库工具,用于在 Hadoop 分布式文件系统(HDFS)上管理和查询大规模结构化数据集。Hive 提供了一个类似 SQL 的查询语言,称为 HiveQL,通过这种语言可以在 HDFS 上执行 MapReduce 作…...

计算机网络:http协议

计算机网络:http协议 一、本文内容与前置知识点1. 本文内容2. 前置知识点 二、HTTP协议工作简介1. 特点2. 传输时间分析3. http报文结构 三、HTTP版本迭代1. HTTP1.0和HTTP1.1主要区别2. HTTP1.1和HTTP2主要区别3. HTTPS与HTTP的主要区别 四、参考文献 一、本文内容…...

【stata】自写命令分享dynamic_est,一键生成dynamic effect

1. 命令简介 dynamic_est 是一个用于可视化动态效应(dynamic effect)的工具。它特别适用于事件研究(event study)或双重差分(Difference-in-Differences, DID)分析。通过一句命令即可展示动态效应&#xf…...

文心一言 VS 讯飞星火 VS chatgpt (342)-- 算法导论23.2 1题

一、对于同一个输入图,Kruskal算法返回的最小生成树可以不同。这种不同来源于对边进行排序时,对权重相同的边进行的不同处理。证明:对于图G的每棵最小生成树T,都存在一种办法来对G的边进行排序,使得Kruskal算法所返回的…...

部署若依Spring boot项目

nohup和& nohup命令解释 nohup命令:nohup 是 no hang up 的缩写,就是不挂断的意思,但没有后台运行,终端不能标准输入。 nohup :不挂断的运行,注意并没有后台运行的功能,就是指,用nohup运行命令可以使命令永久的执行下去,和用户终端没有关系,注意了nohup没有后台…...

oc打包:权限弹窗无法正常弹出

在遇到编写了权限无法弹出弹窗时,需要查看是不是调用时机不对,这里直接教万能改法。 将权限获取方法编写在applicationDidBecomeActive 进入前台的生命周期接口中,如下: if (@available(iOS 14, *)) {NSLog<...

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中&#xff0c;异步编程和事件驱动的架构变得越来越重要。RxJava&#xff0c;作为响应式编程&#xff08;Reactive Programming&#xff09;的一个流行库&#xff0c;为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJ…...

Maven 依赖漏洞扫描检查插件 dependency-check-maven 的使用

前言 在现代软件开发中&#xff0c;开源库的使用愈加普遍&#xff0c;然而这些开源库中的漏洞往往会成为潜在的安全风险。如何及时的发现依赖的第三方库是否存在漏洞&#xff0c;就变成很重要了。 本文向大家推荐一款可以进行依赖包漏洞检查的 maven 插件 dependency-check-m…...

2. 下载rknn-toolkit2项目

官网链接&#xff1a; https://github.com/airockchip/rknn-toolkit2 安装好git&#xff1a;[[1. Git的安装]] 下载项目&#xff1a; git clone https://github.com/airockchip/rknn-toolkit2.git或者直接去github下载压缩文件&#xff0c;解压即可。...

xhr、ajax、axois、fetch的区别

一、XMLHttpRequest (XHR)、AJAX、Axios 和 Fetch API 都是用于在不重新加载整个页面的情况下与服务器进行通信的技术和库。它们在处理超时、终止请求、进度反馈等机制上有一些显著的差异。以下是它们的详细比较&#xff1a; 1. XMLHttpRequest (XHR) XMLHttpRequest 是一种浏…...

【HuggingFace Transformers】OpenAIGPTModel源码解析

OpenAIGPTModel源码解析 1. GPT 介绍2. OpenAIGPTModel类 源码解析 说到ChatGPT&#xff0c;大家可能都使用过吧。2022年&#xff0c;ChatGPT的推出引发了广泛的关注和讨论。这款对话生成模型不仅具备了强大的语言理解和生成能力&#xff0c;还能进行非常自然的对话&#xff0c…...

macOS安装Java和Maven

安装Java Java Downloads | Oracle 官网下载默认说最新的Java22版本&#xff0c;注意这里我们要下载的是Java8&#xff0c;对应的JDK1.8 需要登陆Oracle&#xff0c;没有账号的可以百度下。账号:908344069qq.com 密码:Java_2024 Java8 jdk1.8配置环境变量 open -e ~/.bash_p…...

SpringBoot教程(安装篇) | Elasticsearch的安装

SpringBoot教程&#xff08;安装篇&#xff09; | Elasticsearch的安装 一、确定Elasticsearch版本二、下载elasticsearch&#xff08;windows版本&#xff09;官网下载如何解压配置 允许 别人跨域 访问自己启动运行 三、Es可视化工具安装&#xff08;elasticsearch-head&#…...

前端登录鉴权——以若依Ruoyi前后端分离项目为例解读

权限模型 Ruoyi框架学习——权限管理_若依框架权限-CSDN博客 用户-角色-菜单&#xff08;User-Role-Menu&#xff09;模型是一种常用于权限管理的设计模式&#xff0c;用于实现系统中的用户权限控制。该模型主要包含以下几个要素&#xff1a; 用户&#xff08;User&#xff09;…...

【Tools】大模型中的自注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样 &#x1f3b5; 方芳《摇太阳》 自注意力机制&#xff08;Self-Attention&#xff09;是一…...

PhotoZoom Classic 9软件新功能特性及安装激活图文教程

PhotoZoom Classic 9这款软件能够对数码图片进行放大&#xff0c;而且放大后的图片没有任何的品质的损坏&#xff0c;没有锯齿&#xff0c;不会失真&#xff0c;如果您有兴趣的话可以试试哦&#xff01; PhotoZoom Classic 9软件新功能特性 通过屡获殊荣的 S-Spline XL 插值…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持&#xff0c;不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...

学习一下用鸿蒙​​DevEco Studio HarmonyOS5实现百度地图

在鸿蒙&#xff08;HarmonyOS5&#xff09;中集成百度地图&#xff0c;可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API&#xff0c;可以构建跨设备的定位、导航和地图展示功能。 ​​1. 鸿蒙环境准备​​ ​​开发工具​​&#xff1a;下载安装 ​​De…...