旋转目标检测对照实验-mmrotate基础教程
环境安装和测试可以参考mmrotate旋转目标检测实战指南_validate mmrotate-CSDN博客
使用自定义数据集训练
如果需要使用自己的数据集进行训练,首先需要把自己数据的标签格式转换为dota数据集的格式,形如(前八个数为坐标值,第九个为类别名,第十为识别困难程度)
475.0 982.0 456.0 982.0 461.0 841.0 481.0 842.0 large-vehicle 0
我这里使用另一个公开数据集MSRA-TD500作为例子,目录结构也模仿dota数据集
MSRA-TD500
├── train
│ ├── images
│ ├── labelTxt
├── val
│ ├── images
│ ├── labelTxt
├── test
│ ├── images
在configs/_base_/datasets中创建一个新的数据集脚本msra-td500.py,参照同级目录下的dotav1.py修改
# dataset settings
dataset_type = 'DOTADataset'
classes = ('words', ) # 注意如果是单类别,要在类别后加一个逗号,否则会报错
data_root = 'data/MSRA-TD500/'
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [dict(type='LoadImageFromFile'),dict(type='LoadAnnotations', with_bbox=True),dict(type='RResize', img_scale=(1024, 1024)),dict(type='RRandomFlip', flip_ratio=0.5),dict(type='Normalize', **img_norm_cfg),dict(type='Pad', size_divisor=32),dict(type='DefaultFormatBundle'),dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [dict(type='LoadImageFromFile'),dict(type='MultiScaleFlipAug',img_scale=(1024, 1024),flip=False,transforms=[dict(type='RResize'),dict(type='Normalize', **img_norm_cfg),dict(type='Pad', size_divisor=32),dict(type='DefaultFormatBundle'),dict(type='Collect', keys=['img'])])
]
data = dict(samples_per_gpu=2,workers_per_gpu=2,train=dict(type=dataset_type,classes=classes,ann_file=data_root + 'train/labelTxt/',img_prefix=data_root + 'train/images/',pipeline=train_pipeline),val=dict(type=dataset_type,classes=classes,ann_file=data_root + 'val/labelTxt/',img_prefix=data_root + 'val/images/',pipeline=test_pipeline),test=dict(type=dataset_type,classes=classes,ann_file=data_root + 'test/images/',img_prefix=data_root + 'test/images/',pipeline=test_pipeline))
同时,超参数可以在configs/_base_/schedules目录下选择参考文件修改,最后还要修改模型文件,我这里选择configs/rotated_retinanet/rotated_retinanet_obb_r50_fpn_1x_dota_le90.py,在文件的一开始选择数据集脚本和超参数脚本
_base_ = ['../_base_/datasets/MSRA-TD500.py', '../_base_/schedules/schedule_1x.py','../_base_/default_runtime.py'
]
还需要注意,在检测头中要将num_classes改为实际数据集的数量,否则训练还会报错
bbox_head=dict(type='RotatedRetinaHead',num_classes=1,...
运行训练脚本,添加指定参数即可开始训练。
# 单GPU,如果要在命令中指定工作目录,可以添加参数。--work_dir ${YOUR_WORK_DIR}
python tools/train.py configs/rotated_retinanet/rotated_retinanet_obb_r50_fpn_1x_dota_le90.py
相关文章:
旋转目标检测对照实验-mmrotate基础教程
环境安装和测试可以参考mmrotate旋转目标检测实战指南_validate mmrotate-CSDN博客 使用自定义数据集训练 如果需要使用自己的数据集进行训练,首先需要把自己数据的标签格式转换为dota数据集的格式,形如(前八个数为坐标值,第九个…...
Spring常见的面试问答题(一)
在面试过程中,Spring几乎是必问的几个点之一,特别是其中的IOC和AOP。 Spring常见的面试问答题 什么是Spring? 首先,Spring是一个生态,但是呢,这个生态里面又有个Spring Framework框架。 所以从Spring生…...
STM32 之 SDRAM 详解
目录 前言 一、SDRAM 简介 二、SDRAM的组成原理 2.1存储单元阵列 2.1.1地址译码 2.1.2存储电容 2.2控制逻辑 2.2.1时钟同步 2.2.2命令解码 2.2.3模式寄存器 2.3数据输入 / 输出缓冲 2.3.1数据总线 2.3.2数据锁存 2.4刷新电路 2.4.1自动刷新 2.4.2自刷新 三、S…...
基于图神经网络的最大独立集问题的目标分支
文章目录 Abstract1 Introduction2 Related Work分支顶点选择图神经网络Abstract 分支归约方法结合了分支约束原则和归约规则,在处理以前无法管理的现实世界实例方面特别成功。分支策略决定下一个要在哪个顶点上进行分支。最近,最广泛使用的策略是选择最高度的顶点。 在这项…...
【Qt】事件过滤器
事件过滤器 在 Qt 中,⼀个对象可能经常要查看或拦截另外⼀个对象的事件,如对话框想要拦截按键事件,不让别的组件接收到,或者修改按键的默认值等。通过上⾯的学习,我们已经知道,Qt 创建了 QEvent事件对象之后…...
字符串转换为整数、整数转换为字符串
整数转换为字符串 sprintf()它的功能是将各种类型的数据格式化为字符串,并存储到一个字符数组中。 sprintf 是 C 语言标准库中的一个函数,用于将格式化的数据写入一个字符串中。它的用法与 printf 类似,但不同的是,printf 输出到…...
解决samba无权限创建文件问题
将我服务器利用samba工具映射到到电脑后,没有权限在特定的文件里写文件,比如在mcu这个文件夹里面没有写文件的权限。 查看mcu文件夹的用户属性,属于root属性。 rootzwzn2064-CVN-Z690D5-GAMING-PRO:/home/zwzn2064# ls -ll total 9714860 dr…...
Ribbon快速了解
Ribbon 一、Ribbon 介绍 Ribbon 是一个客户端负载均衡器,它是 Netflix 开源的一个组件,常与 Spring Cloud 一起使用。 二、Ribbon 的作用 客户端负载均衡 Ribbon 可以在客户端实现负载均衡,即在服务消费者端根据一定的算法从多个服务提供者实…...
SpringBoot闲一品交易平台
SpringBoot闲一品交易平台 #vue项目实战 #计算机项目 #java项目 SpringBoot闲一品交易平台通过运用软件工程原理和开发方法,借助Spring Boot框架,旨在实现零食交易信息的高效管理,提升用户的购物体验和满意度。 技术栈 开发语言:…...
基于SpringBoot的物流管理系统
作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 基于JavaSpringBootVueMySQL的物流管理系统【附源码文档】、…...
uniapp微信小程序开发踩坑日记:Pinia持久化报错Cannot read property ‘localStorage‘ of undefined
插件默认使用 localStorage 实现持久化,小程序端不兼容,需要替换持久化 API import { defineStore } from pinia export const useCommonStore defineStore(pack-store, {state: (): State > ({wwInfo: {},globalData: {},timerLock: false, //是…...
负载均衡调度器--LVS
文章目录 集群和分布式集群分布式 LVS介绍LVS特点LVS工作原理LVS集群架构 LVS集群中的术语CIPVIPRSDIPRIP LVS集群的工作模式NAT模式DR模式DR的工作原理DR的特点:DR的网络配置1.配置负载均衡器2.配置后端服务器lo接口的作用 3.测试连接: DR的典型应用场景 TUN模式 L…...
TinyWebSever源码逐行注释(五)_ http_conn.cpp
前言 项目源码地址 项目详细介绍 项目简介: Linux下C轻量级Web服务器,助力初学者快速实践网络编程,搭建属于自己的服务器. 使用 线程池 非阻塞socket epoll(ET和LT均实现) 事件处理(Reactor和模拟Proactor均实现) 的并发模型使用状态机…...
windows手工杀毒-寻找可疑进程之句柄
上篇回顾:windows手工杀毒-寻找可疑进程之内存-CSDN博客 上篇中我们介绍了如果通过进程的内存分析进程是否是可疑进程,主要是通过查看是否有可写可执行的内存页。也可以通过查看内存内容,看是否是可疑内容,不过这个可能需…...
java开发后端
1.BeanUtils.toBean 方法 它是一个常见的 Java 工具方法,用于将一个 JavaBean 对象转换为另一个 JavaBean 对象 FlowOrderDO flowOrder BeanUtils.toBean(createReqVO, FlowOrderDO.class); 这行代码使用了 BeanUtils.toBean 方法,它是一个常见的 Ja…...
Redis 的标准使用规范之数据类型使用规范
数据类型使用规范 提示:以下是本篇文章正文内容,可供参考 (1)、字符文本(STRING) 【建议】选型为简易文本类缓存 :比如普通的字符、文本、Json 结构 ,通常能起到加速读写和降低后端压力的作用。 【建议】…...
人工智能技术导论——基于产生式规则的机器推理
在引出本章的内容之前先介绍一个概念 知识 知识的概念 知识(Knowledge)是人们在改造客观世界的实践中形成的对客观事物(包括自然的和人造的)及其规律的认识,包括对事物的现象、本质、状态、关系、联系和运动等的认识…...
Apache Guacamole 安装及配置VNC远程桌面控制
文章目录 官网简介支持多种协议无插件浏览器访问配置和管理应用场景 Podman 部署 Apache Guacamole拉取 docker 镜像docker-compose.yml部署 PostgreSQL生成 initdb.sql 脚本部署 guacamole Guacamole 基本用法配置 VNC 连接 Mac 电脑开启自带的 VNC 服务 官网 https://guacam…...
在Linux中从视频流截取图片帧(ffmpeg )
Linux依赖说明: 说明: 使用到的 依赖包 1. ffmpegsudo apt update sudo apt-get install ffmpeg2. imagemagick (选装) (检测图像边缘信息推断清晰度,如果是简单截取但个图像帧>用不到<)sudo apt-get install imagemagick备注: 指令及相关参数说明核心指令: (作用: 执…...
使用脚手架来创建 express 项目
使用脚手架(scaffold)可以快速搭建Express应用程序的基本结构。Express自身提供了一个官方脚手架工具叫做express-generator,它可以帮助你快速地生成一个包含基本文件结构的Express项目。 安装Express Generator 首先,你需要全局…...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...
