当前位置: 首页 > news >正文

mysql 限制用户登录次数超过3次就 锁定账户在一段时间内不运行操作

这里是引用
主要实现步骤:
1.目测安装的mysql版本得是5.7.40往上,因为我的版本是5.7.14发现里面没有控制等下限制这个插件,插件具体的查看是在你安装目录下的lib/pugin下面
比如我的:C:\zz\ProgramFiles\MySQL\MySQL Server 5.7\lib\plugin
2.查看一下安装目录下是否有这个插件,connection_control.dll,如果没有你可能是版本太低了,而且mysql版本相差过大 复制过来的这个文件也不好使,在执行加载插件的时候会报错,并且执行加载插件必须得有插件存在。
在这里插入图片描述
3.执行加载插件的命令:插件必须存在 不然会报错

INSTALL PLUGIN CONNECTION_CONTROL SONAME 'connection_control.dll';INSTALL PLUGIN CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS SONAME 'connection_control.dll';

如果插件正常 不出意外是可以执行成功的。
4.查看插件内容:我已经设置过了 表示3次就限制用户登录,限制时间为10分钟,60000这个是毫秒换算一下等于10分钟


SHOW VARIABLES  LIKE 'connection_%' ;

在这里插入图片描述
5.设置次数和时间,这样就完成了

SET GLOBAL connection_control_failed_connections_threshold=5;
SET GLOBAL connection_control_min_connection_delay=600000;

相关文章:

mysql 限制用户登录次数超过3次就 锁定账户在一段时间内不运行操作

这里是引用 主要实现步骤: 1.目测安装的mysql版本得是5.7.40往上,因为我的版本是5.7.14发现里面没有控制等下限制这个插件,插件具体的查看是在你安装目录下的lib/pugin下面 比如我的:C:\zz\ProgramFiles\MySQL\MySQL Server 5.7\l…...

深度学习中的常用线性代数知识汇总——第二篇:行列式、逆矩阵、特征值与特征向量

文章目录 0. 前言1. 行列式1.1 行列式的定义1.2 行列式的计算方法1.3 行列式的性质1.4 行列式在深度学习中的应用 2. 逆矩阵2.1 逆矩阵的定义2.2 逆矩阵的计算方法2.3 逆矩阵的性质2.4 逆矩阵在深度学习中的应用 3. 特征值与特征向量3.1 特征值与特征向量的定义3.2 特征值和特征…...

《MaPLe: Multi-modal Prompt Learning》中文校对版

系列论文研读目录 文章目录 系列论文研读目录题目:《Maple:多模态提示学习》摘要1.简介2.相关工作视觉语言模型:提示学习:视觉语言模型中的提示学习: 3.方法3.1.回看CLIP编码图像:编码文本:Zero…...

MFC修改控件ID的详细说明

控件的ID可以在该对话框的.rc中修改 首先需要开启资源视图 然后在资源视图中打开该对话框 选中某个控件,就可以在属性面板中修改ID了 在此处修改ID后,对应Resource.h中也会发生变化 若在.rc中创建了一个控件时,Resource.h中会生成一个对应…...

MySQL高可用配置及故障切换

目录 引言 一、MHA简介 1.1 什么是MHA(MasterHigh Availability) 1.2 MHA的组成 1.3 MHA的特点 1.4 MHA工作原理 二、搭建MySQL MHA 2.1 实验思路 2.2 实验环境 1、关闭防火墙和安全增强系统 2、修改三台服务器节点的主机名 2.3 实验搭建 1、…...

AI模型一体机:智能办公的未来

引言 随着人工智能技术的飞速发展,我们正步入一个全新的智能办公时代。AI模型一体机,作为这个时代的先锋产品,正以其强大的功能和便捷的操作,改变着我们的工作方式。它不仅仅是一个硬件设备,更是一个集成了最新人工智…...

jina的Embedding Reranker

插入向量库是否需要使用 Jina 的 Embedding 和 Reranker 取决于你希望如何处理和优化语义搜索的质量。以下是使用 Jina Embedding 和 Reranker 的原因,以及它们如何作用于插入向量库的流程。 1. Jina 的 Embedding 作用 Jina 是一个流行的开源框架,用于…...

Prompt Engineer: 使用Thought来提升LLM的回复能力

这是一个小的实验, 用来测试思维导图这种表达形式对于LLM在答案组织上是否会有帮助 结构化Prompt 根据目前的测试来看, 结构化Ptompt在实践中有着很好的可读性以及可维护性. (通常来说我使用Markdown格式来作为输入的格式, 虽然在内容完整性上存在问题, 但是我是不喜欢写丑陋…...

tekton构建标准ci(clone repo, test, build push img)

场景介绍 我们在上一篇文章中构建了一个最简单的ci,接下来我们对我们的github的项目构建一个较标准的ci。 Tekton简介,安装和构建最简单ci/cd-CSDN博客文章浏览阅读239次,点赞2次,收藏2次。本文介绍了tekton是什么,如…...

【电力系统】复杂网络分析在电力系统规范中的应用

摘要 复杂网络分析在电力系统中的应用为理解和优化电力系统的运行提供了新的视角。本文探讨了复杂网络理论在电力系统规范中的应用,通过分析电力系统的拓扑结构、节点重要性和脆弱性,提出了优化电力系统设计和运行的新策略。仿真结果表明,复…...

CDGA|推动数据治理与传统产业深度融合:策略与实践路径

在数字化浪潮席卷全球的今天,数据已成为推动经济社会发展的关键生产要素。传统产业,作为国民经济的基石,正面临着前所未有的转型挑战与机遇。如何让数据治理这一现代管理理念与实践方法深度融入传统产业,促进其转型升级与高质量发…...

【FastAPI】离线使用Swagger UI 或 国内网络如何快速加载Swagger UI

在FastAPI中,默认情况下,当应用启动时,Swagger UI 会通过在线加载 Swagger UI 的静态资源。这意味着如果应用运行在没有互联网连接的环境中,默认的 Swagger 文档页面将无法加载。 为了在离线环境中使用 Swagger UI,你…...

Linux:从入门到放弃

目录 一、基础巩固Linux:常用命令 二、实战应用Linux:CentOS7基础配置Linux:CentOS7安装MySQL 三、常见问题Linux:yum源失效问题 一、基础巩固 Linux:常用命令 二、实战应用 Linux:CentOS7基础配置 Lin…...

SVM 监督学习

一、分类问题 利用一条直线分类存在很多问题 二、SVM 支持向量机 其核心思想是通过在特征空间中找到一个最优的超平面来进行分类,并且间隔最大。分类面尽可能远离样本点,宽度越大越好。 适用于中小型复杂数据集的分类。 三、硬间隔和软间隔 硬&#x…...

奖励模型的训练

文章目录 训练方法训练策略代码实践由于 RLHF 的训练过程中需要依赖大量的人类偏好数据进行学习,因此很难在训练过程中要求人类标注者实时提供偏好反馈。为此,我们需要训练一个模型来替代人类在 RLHF 训练过程中实时提供反馈,这个模型被称为奖励模型。在训练开始前,我们需要…...

Ubuntu22.04之禁止内核自动更新(二百六十八)

简介: CSDN博客专家、《Android系统多媒体进阶实战》一书作者 新书发布:《Android系统多媒体进阶实战》🚀 优质专栏: Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏: 多媒体系统工程师系列【…...

kaggle题-房价预测(Pytorch),手把手教,全文代码解释

房价预测 本题是经典的通过表格数据去预测最终值,主要分为几大步骤: 一.将数据集修改为可以代入到网络模型的数字,因为给的数据大部分都是str类型,是无法直接放到网络模型里跑的,例如下图,很多标签值为str类…...

PulseSensor心率传感器详解(STM32)

目录 一、介绍 二、传感器原理 1.接线图 2.引脚描述 3.工作原理:光电容积法原理 4.工作原理:心率采样数据处理算法 三、程序设计 main.c文件 adcx.h文件 adc.c文件 四、实验效果 五、资料获取 项目分享 一、介绍 PulseSensor传感器是一种基…...

NISP 一级 | 3.1 网络基础知识

关注这个证书的其他相关笔记:NISP 一级 —— 考证笔记合集-CSDN博客 0x01:Internet 和 TCP/IP 协议 因特网(Internet)通过 TCP/IP 协议将遍布在全世界各地的计算机互联,从而形成超级计算机网络。因特网为用户提供了非…...

模拟网络丢包常用方法以及工具

文章目录 背景常用方法代码实现使用方法测试代码 使用网络流量控制工具 常用工具Clumsy 背景 在软件开发过程中,经常需要模拟不同的网络环境来测试应用在不同条件下的表现。 这些模拟可以采用多种方式进行,包括在代码中实现随机丢包、随机延时、乱序&am…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

python打卡day49

知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

蓝桥杯 冶炼金属

原题目链接 &#x1f527; 冶炼金属转换率推测题解 &#x1f4dc; 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V&#xff0c;是一个正整数&#xff0c;表示每 V V V 个普通金属 O O O 可以冶炼出 …...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...