mysql 限制用户登录次数超过3次就 锁定账户在一段时间内不运行操作
这里是引用
主要实现步骤:
1.目测安装的mysql版本得是5.7.40往上,因为我的版本是5.7.14发现里面没有控制等下限制这个插件,插件具体的查看是在你安装目录下的lib/pugin下面
比如我的:C:\zz\ProgramFiles\MySQL\MySQL Server 5.7\lib\plugin
2.查看一下安装目录下是否有这个插件,connection_control.dll,如果没有你可能是版本太低了,而且mysql版本相差过大 复制过来的这个文件也不好使,在执行加载插件的时候会报错,并且执行加载插件必须得有插件存在。
3.执行加载插件的命令:插件必须存在 不然会报错
INSTALL PLUGIN CONNECTION_CONTROL SONAME 'connection_control.dll';INSTALL PLUGIN CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS SONAME 'connection_control.dll';
如果插件正常 不出意外是可以执行成功的。
4.查看插件内容:我已经设置过了 表示3次就限制用户登录,限制时间为10分钟,60000这个是毫秒换算一下等于10分钟
SHOW VARIABLES LIKE 'connection_%' ;
5.设置次数和时间,这样就完成了
SET GLOBAL connection_control_failed_connections_threshold=5;
SET GLOBAL connection_control_min_connection_delay=600000;
相关文章:

mysql 限制用户登录次数超过3次就 锁定账户在一段时间内不运行操作
这里是引用 主要实现步骤: 1.目测安装的mysql版本得是5.7.40往上,因为我的版本是5.7.14发现里面没有控制等下限制这个插件,插件具体的查看是在你安装目录下的lib/pugin下面 比如我的:C:\zz\ProgramFiles\MySQL\MySQL Server 5.7\l…...
深度学习中的常用线性代数知识汇总——第二篇:行列式、逆矩阵、特征值与特征向量
文章目录 0. 前言1. 行列式1.1 行列式的定义1.2 行列式的计算方法1.3 行列式的性质1.4 行列式在深度学习中的应用 2. 逆矩阵2.1 逆矩阵的定义2.2 逆矩阵的计算方法2.3 逆矩阵的性质2.4 逆矩阵在深度学习中的应用 3. 特征值与特征向量3.1 特征值与特征向量的定义3.2 特征值和特征…...

《MaPLe: Multi-modal Prompt Learning》中文校对版
系列论文研读目录 文章目录 系列论文研读目录题目:《Maple:多模态提示学习》摘要1.简介2.相关工作视觉语言模型:提示学习:视觉语言模型中的提示学习: 3.方法3.1.回看CLIP编码图像:编码文本:Zero…...

MFC修改控件ID的详细说明
控件的ID可以在该对话框的.rc中修改 首先需要开启资源视图 然后在资源视图中打开该对话框 选中某个控件,就可以在属性面板中修改ID了 在此处修改ID后,对应Resource.h中也会发生变化 若在.rc中创建了一个控件时,Resource.h中会生成一个对应…...

MySQL高可用配置及故障切换
目录 引言 一、MHA简介 1.1 什么是MHA(MasterHigh Availability) 1.2 MHA的组成 1.3 MHA的特点 1.4 MHA工作原理 二、搭建MySQL MHA 2.1 实验思路 2.2 实验环境 1、关闭防火墙和安全增强系统 2、修改三台服务器节点的主机名 2.3 实验搭建 1、…...

AI模型一体机:智能办公的未来
引言 随着人工智能技术的飞速发展,我们正步入一个全新的智能办公时代。AI模型一体机,作为这个时代的先锋产品,正以其强大的功能和便捷的操作,改变着我们的工作方式。它不仅仅是一个硬件设备,更是一个集成了最新人工智…...
jina的Embedding Reranker
插入向量库是否需要使用 Jina 的 Embedding 和 Reranker 取决于你希望如何处理和优化语义搜索的质量。以下是使用 Jina Embedding 和 Reranker 的原因,以及它们如何作用于插入向量库的流程。 1. Jina 的 Embedding 作用 Jina 是一个流行的开源框架,用于…...

Prompt Engineer: 使用Thought来提升LLM的回复能力
这是一个小的实验, 用来测试思维导图这种表达形式对于LLM在答案组织上是否会有帮助 结构化Prompt 根据目前的测试来看, 结构化Ptompt在实践中有着很好的可读性以及可维护性. (通常来说我使用Markdown格式来作为输入的格式, 虽然在内容完整性上存在问题, 但是我是不喜欢写丑陋…...
tekton构建标准ci(clone repo, test, build push img)
场景介绍 我们在上一篇文章中构建了一个最简单的ci,接下来我们对我们的github的项目构建一个较标准的ci。 Tekton简介,安装和构建最简单ci/cd-CSDN博客文章浏览阅读239次,点赞2次,收藏2次。本文介绍了tekton是什么,如…...

【电力系统】复杂网络分析在电力系统规范中的应用
摘要 复杂网络分析在电力系统中的应用为理解和优化电力系统的运行提供了新的视角。本文探讨了复杂网络理论在电力系统规范中的应用,通过分析电力系统的拓扑结构、节点重要性和脆弱性,提出了优化电力系统设计和运行的新策略。仿真结果表明,复…...

CDGA|推动数据治理与传统产业深度融合:策略与实践路径
在数字化浪潮席卷全球的今天,数据已成为推动经济社会发展的关键生产要素。传统产业,作为国民经济的基石,正面临着前所未有的转型挑战与机遇。如何让数据治理这一现代管理理念与实践方法深度融入传统产业,促进其转型升级与高质量发…...

【FastAPI】离线使用Swagger UI 或 国内网络如何快速加载Swagger UI
在FastAPI中,默认情况下,当应用启动时,Swagger UI 会通过在线加载 Swagger UI 的静态资源。这意味着如果应用运行在没有互联网连接的环境中,默认的 Swagger 文档页面将无法加载。 为了在离线环境中使用 Swagger UI,你…...
Linux:从入门到放弃
目录 一、基础巩固Linux:常用命令 二、实战应用Linux:CentOS7基础配置Linux:CentOS7安装MySQL 三、常见问题Linux:yum源失效问题 一、基础巩固 Linux:常用命令 二、实战应用 Linux:CentOS7基础配置 Lin…...

SVM 监督学习
一、分类问题 利用一条直线分类存在很多问题 二、SVM 支持向量机 其核心思想是通过在特征空间中找到一个最优的超平面来进行分类,并且间隔最大。分类面尽可能远离样本点,宽度越大越好。 适用于中小型复杂数据集的分类。 三、硬间隔和软间隔 硬&#x…...
奖励模型的训练
文章目录 训练方法训练策略代码实践由于 RLHF 的训练过程中需要依赖大量的人类偏好数据进行学习,因此很难在训练过程中要求人类标注者实时提供偏好反馈。为此,我们需要训练一个模型来替代人类在 RLHF 训练过程中实时提供反馈,这个模型被称为奖励模型。在训练开始前,我们需要…...

Ubuntu22.04之禁止内核自动更新(二百六十八)
简介: CSDN博客专家、《Android系统多媒体进阶实战》一书作者 新书发布:《Android系统多媒体进阶实战》🚀 优质专栏: Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏: 多媒体系统工程师系列【…...

kaggle题-房价预测(Pytorch),手把手教,全文代码解释
房价预测 本题是经典的通过表格数据去预测最终值,主要分为几大步骤: 一.将数据集修改为可以代入到网络模型的数字,因为给的数据大部分都是str类型,是无法直接放到网络模型里跑的,例如下图,很多标签值为str类…...

PulseSensor心率传感器详解(STM32)
目录 一、介绍 二、传感器原理 1.接线图 2.引脚描述 3.工作原理:光电容积法原理 4.工作原理:心率采样数据处理算法 三、程序设计 main.c文件 adcx.h文件 adc.c文件 四、实验效果 五、资料获取 项目分享 一、介绍 PulseSensor传感器是一种基…...

NISP 一级 | 3.1 网络基础知识
关注这个证书的其他相关笔记:NISP 一级 —— 考证笔记合集-CSDN博客 0x01:Internet 和 TCP/IP 协议 因特网(Internet)通过 TCP/IP 协议将遍布在全世界各地的计算机互联,从而形成超级计算机网络。因特网为用户提供了非…...

模拟网络丢包常用方法以及工具
文章目录 背景常用方法代码实现使用方法测试代码 使用网络流量控制工具 常用工具Clumsy 背景 在软件开发过程中,经常需要模拟不同的网络环境来测试应用在不同条件下的表现。 这些模拟可以采用多种方式进行,包括在代码中实现随机丢包、随机延时、乱序&am…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

Xela矩阵三轴触觉传感器的工作原理解析与应用场景
Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知,帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量,能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度,还为机器人、医疗设备和制造业的智…...
k8s从入门到放弃之HPA控制器
k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率(或其他自定义指标)来调整这些对象的规模,从而帮助应用程序在负…...