当前位置: 首页 > news >正文

获取业务库的schema信息导出成数据字典

获取业务库的schema信息导出成数据字典

场景:需要获取业务库的schema信息导出成数据字典,以下为获取oracle与mysql数据库的schema信息语句


--获取oracle库schema信息
selecttt1.owner as t_owner,tt1.table_name,tt1.column_name,tt1.data_type,tt1.data_length,tt1.nullable,tt1.comments,tt1.column_id,tt2.pkcols
from
(selectatc.owner,atc.table_name,atc.column_name,atc.data_type,atc.data_length,atc.nullable,acc.comments,atc.column_idfrom all_tab_columns atcjoin all_col_comments accon atc.table_name=acc.table_nameand atc.owner=acc.ownerand atc.column_name=acc.column_name
) tt1
left join(SELECT OWNER,table_name,LISTAGG(column_name,',') WITHIN group(ORDER BY column_name) AS pkcolsFROM(select a.OWNER,a.table_name,a.column_namefrom all_cons_columns ajoin all_constraints bon a.constraint_name = b.constraint_nameand a.OWNER=b.OWNERand b.constraint_type = 'P') t1GROUP BY OWNER,table_name
)tt2
on tt1.OWNER=tt2.OWNER
and tt1.table_name=tt2.table_name
order by tt1.owner,tt1.table_name, tt1.column_id;--获取mysql库schema信息
selecttt1.table_schema as t_owner,tt1.table_name,tt1.column_name,tt1.data_type,tt1.character_maximum_length,tt1.is_nullable,tt1.column_comment,tt1.ordinal_position,tt2.pkcols
from information_schema.COLUMNS tt1
left join
(selectCONSTRAINT_SCHEMA,table_name,group_concat(column_name order by ordinal_position separator ',') as pkcolsfrom information_schema.key_column_usage twhere constraint_name='PRIMARY'group by CONSTRAINT_SCHEMA,table_name
)tt2
on tt1.table_schema=tt2.CONSTRAINT_SCHEMA
and tt1.table_name=tt2.table_name
order by tt1.table_schema,tt1.table_name, tt1.ordinal_position

相关文章:

获取业务库的schema信息导出成数据字典

获取业务库的schema信息导出成数据字典 场景:需要获取业务库的schema信息导出成数据字典,以下为获取oracle与mysql数据库的schema信息语句 --获取oracle库schema信息 selecttt1.owner as t_owner,tt1.table_name,tt1.column_name,tt1.data_type,tt1.dat…...

力扣: 快乐数

文章目录 需求分析代码结尾 需求 编写一个算法来判断一个数 n 是不是快乐数。 「快乐数」 定义为: 对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。 然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。 …...

一般位置下的3D齐次旋转矩阵

下面的矩阵虽然复杂,但它的逆矩阵求起来非常简单,只需要在 sin ⁡ θ \sin\theta sinθ 前面加个负号就是原来矩阵的逆矩阵。 如果编程序是可以直接拿来用的,相比其它获取一般旋转轴不经过原点的三维旋转矩阵的途径或算法,应该能…...

每日一题——第八十六题

题目&#xff1a;写一个函数&#xff0c;输入一个十进制的数&#xff0c;将其转换为任意的r进制数 #include<stdio.h> void convertToBaseR(int num, int r); int main() {int num, r;printf("请输入十进制的整数&#xff1a;");scanf_s("%d", &…...

十、组合模式

组合模式&#xff08;Composite Pattern&#xff09;是一种结构型设计模式&#xff0c;它允许将对象组合成树形结构来表示“部分-整体”的层次关系。组合模式能够让客户端以统一的方式对待单个对象和对象集合&#xff0c;使得客户端在处理复杂树形结构的时候&#xff0c;可以以…...

一分钟了解网络安全风险评估!

网络安全风险评估是一种系统性的分析过程&#xff0c;旨在识别和评估网络系统中的潜在安全风险。这个过程包括识别网络资产、分析可能的威胁和脆弱性、评估风险的可能性和影响&#xff0c;以及提出缓解措施。网络安全风险评估有助于组织了解其网络安全状况&#xff0c;制定相应…...

【springsecurity】使用PasswordEncoder加密用户密码

目录 1. 导入依赖2. 配置 PasswordEncoder3. 使用 PasswordEncoder 加密用户密码4. 使用 PasswordEncoder 验证用户密码 1. 导入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-security</artifac…...

从0到1实现线程池(C语言版)

目录 &#x1f324;️1. 基础知识 ⛅1.1 线程概述 ⛅1.2 linux下线程相关函数 &#x1f325;️1.2.1 线程ID &#x1f325;️1.2.2 线程创建 &#x1f325;️1.2.3 线程回收 &#x1f325;️1.2.4 线程分离 &#x1f324;️2. 线程池概述 ⛅2.1 线程池的定义 ⛅2.2 为…...

Visual studio自动添加头部注释

记事本打开VS版本安装目录下的Class.cs文件 增加如下内容&#xff1a;...

【C#生态园】提升性能效率:C#异步I/O库详尽比较和应用指南

优化异步任务处理&#xff1a;C#异步I/O库全面解析 前言 在C#开发中&#xff0c;异步I/O是一个重要的主题。为了提高性能和响应速度&#xff0c;开发人员需要深入了解各种异步I/O库的功能和用法。本文将介绍几个常用的C#异步I/O库&#xff0c;包括Task Parallel Library、Asy…...

管理医疗AI炒作的三种方法

一个人类医生和机器人医生互相伸手。 全美的医院、临床诊所和医疗系统正面临重重困难。他们的员工队伍紧张且人员短缺&#xff0c;运营成本不断上升&#xff0c;服务需求常常超过其承受能力&#xff0c;限制了医疗服务的可及性。 人工智能应运而生。在自ChatGPT推出将AI推向聚…...

VMware Workstation Pro Download 个人免费使用

参考 VMware Workstation Pro Download...

DevOps平台搭建过程详解--Gitlab+Jenkins+Docker+Harbor+K8s集群搭建CICD平台

一、环境说明 1.1CI/CD CI即为持续集成(Continue Integration,简称CI)&#xff0c;用通俗的话讲&#xff0c;就是持续的整合版本库代码编译后制作应用镜像。建立有效的持续集成环境可以减少开发过程中一些不必要的问题、提高代码质量、快速迭代等;(Jenkins) CD即持续交付Con…...

Nginx之日志切割,正反代理,HTTPS配置

1 nginx日志切割 1.1 日志配置 在./configure --prefixpath指定的path中切换进去&#xff0c;找到log文件夹&#xff0c;进去后找到都是对应的日志文件 其中的nginx.pid是当前nginx的进程号&#xff0c;当使用ps -ef | grep nginx获得就是这个nginx.pid的值 在nginx.conf中…...

Mysql数据量大,如何拆分Mysql数据库(垂直拆分)

垂直拆分&#xff08;Vertical Partitioning&#xff09;是一种将数据库按照业务模块或功能进行拆分的方法&#xff0c;目的是将不同模块的数据放到不同的数据库中&#xff0c;从而减少单个数据库的压力&#xff0c;提高系统的性能和可扩展性。垂直拆分适用于数据量大且业务模块…...

机器人可能会在月球上提供帮助

登月是我们这个时代最具标志性的事件之一&#xff0c;这可能还算轻描淡写了&#xff1a;这是我们迄今为止在物理上探索得最远的一次。我听过一些当时的老广播&#xff0c;它们可以让你想象出这次航行的重要性。 现在&#xff0c;研究人员表示&#xff0c;我们可能很快就能重返…...

真实案例分享:零售企业如何避免销售数据的无效分析?

在零售业务的数据分析中&#xff0c;无效分析不仅浪费时间和资源&#xff0c;还可能导致错误的决策。为了避免这种情况&#xff0c;企业必须采取策略来确保他们的数据分析工作能够产生实际的商业价值。本文将通过行业内真实的案例&#xff0c;探讨零售企业如何通过精心设计的数…...

ctfshow-文件包含

web78 <?phpif(isset($_GET[file])){$file $_GET[file];include($file); }else{highlight_file(__FILE__); } 判断是否存在file参数 如果存在 将包含这个参数值 文件 php://filter可以获取指定文件源码。当它与包含函数结合时&#xff0c;php://filter流会被当作php文件执…...

Qt事件处理机制

用qt实现简单闹钟 widget.h #ifndef WIDGET_H #define WIDGET_H #include<QPushButton> #include<QTextEdit> #include<QLabel> #include <QWidget> #include<QMouseEvent> #include<QPoint> #include<QTime> #include<QTimer&…...

vue axios 如何读取项目下的json文件

在 Vue 项目中&#xff0c;使用 axios 读取本地的 JSON 文件可以通过将 JSON 文件放置在 public 目录中&#xff0c;然后通过 axios 发起请求读取。 步骤&#xff1a; 将 JSON 文件放置在 public 目录下&#xff1a; Vue 项目中的 public 目录是静态资源目录&#xff0c;项目编…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践

作者&#xff1a;吴岐诗&#xff0c;杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言&#xff1a;融合数据湖与数仓的创新之路 在数字金融时代&#xff0c;数据已成为金融机构的核心竞争力。杭银消费金…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...